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Introduction
The development of modeling approaches for the failure analysis of ceramic-based

material systems used in high temperature environments was the primary objective of this
research effort. These materials have the potential to support many key engineering technologies
related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful
properties such as retention of strength at high temperatures, chemical inertness, and low density.
However, the use of monolithic ceramics has been limited by their inherent brittleness and a
large variation in strength. This behavior has motivated material scientists to reinforce the
monolithic material with a ceramic fiber. The addition of a second ceramic phase with an
optimized interface increases toughness and marginally increases strength. The primary purpose
of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in
this research effort were laminated ceramic matrix composites, as well as two- and three-
dimensional fabric reinforced ceramic composites. These emerging composite systems can
compete with metals in many demanding applications. However, the ongoing metamorphosis of
ceramic composite material systems, and the lack of standardized design data has in the past
tended to minimize research efforts related to structural analysis. Many structural components
fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The
justification for this approach lies in the fact that during the initial developmental phases for a
material system fabrication issues are paramount. Emphasis is placed on demonstrating
feasibility rather than fully understanding the processes controlling mechanical behavior. This is
understandable during periods of rapid improvements in material properties for any composite
system. But to avoid the ad hoc approach, the analytical methods developed under this effort can
be used to develop rational structural design protocols.

In regards to predicting composite failure behavior, there is a philosophical division that
separates analytical schools of thought into microstructural methods (usually based on principles
of fracture mechanics), and phenomenological methods. Analysts from the first school would
design the material in the sense that the constituents are distinct structural components, and the
composite ply (or lamina) is considered a structure in its own right. Rigorous fracture mechanics
criteria have been proposed that adopt the microstructural viewpoint, but all are deterministic

criteria. Mature reliability based design methods using fracture mechanics concepts will not



surface until a coherent mixed mode fracture criterion has been proposed and verified
experimentally.

Analysts from the latter school of thought would design with the material (i.e., analyze
structural components fabricated from the material). Here the ply (or lamina) is represented as a
homogenized material with strength properties that are determined from a number of well
planned phenomenological experiments. This philosophy was embraced in this research effort.
There are practical reasons for adopting this viewpoint. It is recognized that the failure
characteristics of laminated ceramic composites are controlled by a number of local phenomena
including matrix cracking, debonding and slipping between matrix and fibers, and fiber
breakage, all of which strongly interact. Understanding the analytical concepts associated with
the microstructural viewpoint provides insight and intuition prior to constructing multiaxial
failure theories that reflect certain aspects of local behavior. It is noted that future work could
extend reliability methods to the constituent level in a rational and practical manner. However, a
top-down approach, that is proposing failure criteria at the ply level (the approach adopted in this
research effort), established a viable and working design protocols. Adopting the bottom-up
approach allowed the possibility of becoming mired in detail (experiméntal and analytical) when
multiaxial reliability analyses were required.

There is a great deal of intrinsic variability in the strength of each brittle constituent of a
ceramic matrix composite, but depending on the composite system, the transverse matrix
cracking strength may either be deterministic or probabilistic. Experimental evidence has
appeared in the open literature that strongly indicates a large variation in the stress at which
transverse matrix cracking occurs in CMC material systems of interest in aerospace applications.
Statistical models are a necessity for those composite systems which exhibit scatter in strength.
For this research effort strength is treated in a probabilistic fashion, requiring that a deterministic
value for strength be a limiting case that is readily obtained from the proposed rgliability model.
A number of macroscopic reliability theories existed at the start of this research effort that treat
unidirectional composites as homogenized, anisotropic materials. These methods use
phenomenological strength data directly without hypothesizing specific crack shapes or
distributions. Theories of this genre are generally termed noninteractive if individual stress
components are compared to their strengths separately. This modeling approach results in

component reliability computations that are quite tractable. Work by Duffy and Amold (1990),



Duffy and Manderscheid (1990), and Duffy et al. (1990) are representative of multiaxial
noninteractive reliability models for anisotropic materials. Alternatively, one can assume that for
multiaxial states of stress, failure depends on specific stochastic combinations of material
strengths (i.e., the random strength variables interact). An interactive failure criterion was
developed by the principal investigator and his colleagues (see Palko, 1992, for a complete
overview). This model was formulated for isotropic whisker-toughened ceramic composites,
where the probability of failure for a given stress state is computed using Monte Carlo methods.
It was demonstrated that models of this type can readily be extended to other composite
architectures in 2 manner outlined by and Duffy and Palko, 1992.

In the following sections a more detailed report of the work and accomplishments

associated with this research effort is presented in a chronological fashion.

C/CARES Algorithm (1993-1994)

As in other types of structural analysis of components (e.g., deformation analysis,
stability analysis, etc.), the stress field must be characterized in order to perform reliability
computations. Several commercial finite element programs (e.g,, MSC/NASTRAN, MARC,
ABAQUS, and ANSYS) have laminate analysis capabilities that allow the design engineer to
determine the structural response of components subjected to thermo-mechanical loads.
Coupling these finite element programs to an integrated probabilistic composite design program
that evaluates component reliability is an attractive analytical tool. The test-bed computer
program C/CARES (Composite Ceramics Analysis and Reliability Evaluation of Structures
preliminary details are outlined in Duffy and Gyekenyesi, 1990, Duffy et. al, 1991; and
Starlinger et. al., 1992) is representative of this type of integrated design program. The primary
function of the C/CARES program is the computation of quasi-static reliability of laminated
structural components subjected to multiaxial load conditions. Through the use of this computer
algorithm, design engineers can maximize component reliability by optimizing ply lay-ups,
component geometry, and applied loads. A preliminary version of the algorithm has been
completed and released to several American companies.

A preliminary version of the C/CARES program was completed and several
improvements were implemented under this research effort. Specifically, an interface for the

ANSYS finite element program was added to the algorithm. This program is operational with



ANSYS version 5.0. This interface supports the use of the subelement technique outlined in
Starlinger et. al, 1992. Several suggestions from users were also implemented in the code.

An article about the algorithm was written by the research associate and submitted to the
1993 International Gas Turbine Institute Technology Report. This article was included in the
report thus providing C/CARES with international exposure. This technology report targets a
key design community which is interested in the advancement of CMC material systems. Other
similar articles highlighting the algorithm have appeared in reports such as the 1993 NASA
Research and Technology Report, and branch brochures.

User support was provided for the code. This includes the presentation of the algorithm
in a workshop at NASA Lewis Research Center which showcased several codes developed under
the HITEMP program. A number of American industrial clients were invited to partake in the
interactive workshop. The workshop included a presentation highlighting the technical details of
the C/CARES algorithm, as well as a hands on example session where the participants
interactively used the algorithm in a simulated design analysis. Asa result of this workshop and
continual effort on the part of the research associate sponsored by this grant, the C/CARES users
base grew moderately. A continuous and stable support system has also been established where
the research associate provides hot-line support for the user community.

The C/CARES code has also been presented to participants in the DOE sponsored
Continuous Fiber Ceramic Composite program. Meetings were held at NASA LeRC which were
attended by participants in this program. The details of C/CARES and example problems were
presented to the participants to make them aware of its capabilities. The intent was to include
C/CARES in the CFCC program as a design option for ceramic composite components. Along
these lines, the C/CARES algorithm was used in the design of a laminated CMC heat exchanger
for industrial furnace applications. The results of this design analysis were presented at the 6th
Annual HITEMP Review (see Palko and Duffy, 1993). This is another example of technology

transfer and support provided to American industry under the auspices of this grant.

Interactive Reliability Models (1993-1994
An interactive reliability criteria for laminated composite materials was developed during
this time period. To increase efficiency of the programs, steps have been taken to implement fast

probability integration in place of Monte Carlo simulation when implementing these interactive



routines. Along these lines a research associate supported by this grant attended "A Short
Course of Modern Reliability Methods" at NASA Marshall Space Flight Center in Huntsville,
Alabama. This class covered methods that were needed to implement the alternative integration

schemes for interactive failure models.

Alternative Fiber Architecture (1993-1994)

Fabricating structural components from laminated ceramic composite materials
represents a progressive step forward in the utilization of advanced materials. However, in some
design applications this material is not suitable due to the lack of through thickness reinforcing
or poor transverse properties. For this reason, alternative fiber architectures were explored
which include two- and three- dimensional weaves. Several models have been developed to
predict the behavior of composites fabricated with these types of architectures (see Chou, 1992).
These models are based on a unit-cell approach, where certain mechanical properties such as
stiffness are evaluated for a single unit cell, and are then used to predict the structural response of

a component. These models were studied during this time period for potential use in the
C/CARES algorithm.

Publication (1993-1994)

/L "Parameter Estimation Based on Optimizing Goodness-of-Fit Statistics for Structural
Reliability," A. Starlinger, S.F. Dufty, and J L. Palko, Presented at the 10th Biennial
ASME Conference on Stress Analysis, Reliability, and Failure Prevention, Sept. 19-22,
1993, Albuquerque, NM. h

V2. "Design of a Laminated CMC Heat Exchanger Using the C/CARES Algorithm," J.L.
Palko and S.F. Duffy, Presented at the 6th Annual HITEMP Review, October 26-27,
1993, Westlake, OH.

'3, "Interactive Reliability Model for Whisker-Toughened Ceramics," J.L. Palko, NASA CR
191948, 1993.
v4. “Structural Reliability Analysis of Laminated CMC Components," S.F. Duffy, J.L. Palko,

and I.P. Gyekenyesi, Transactions of the ASME - Journal of Engineering for Gas
Turbines and Power, Vol. 115, No. 1, pp. 103-108, January, 1993 (also published as
NASA TM-103685).

/3. "Reliability Analysis of Structural Components Fabricated from Ceramic Materials Using
a Three-Parameter Weibull Distribution," S.F. Duffy, L.M. Powers, and A. Starlinger,
Transactions of the ASME - Journal of Engineering for Gas Turbines and Power, Yol.
115, No. 1, pp. 109-116, January, 1993 (also published as NASA TM-105370).



C/CARES Algorithm (1994-1995)

As in other types of structural analysis of components (e.g., deformation analysis,
stability analysis, etc.), the stress field must be characterized in order to perform reliability
computations. Several commercial finite element programs (e.g., MSC/NASTRAN, MARC,
ABAQUS, ANSYS and COSMOS/M) have laminate analysis capabilities that allow the design
engineer to determine the stress field of components subjected to thermo-mechanical loads.
Coupling these finite element programs to an integrated probabilistic composite design program
that evaluates component reliability is an attractive analytical tool. The test-bed computer
program C/CARES (Composite Ceramics Analysis and Reliability Evaluation of Structures
preliminary details are outlined in Duffy and Gyekenyesi, 1990; Duffy et. al, 1991; and
Starlinger et. al., 1992) is representative of this type of integrated design program.

The primary function of the C/CARES program is the computation of quasi-static
reliability of laminated structural components subjected to multiaxial load conditions. Through
the use of this computer algorithm, design engineers can maximize component reliability by
optimizing ply lay-ups, component geometry, and applied loads. A preliminary version of the
algorithm has been completed and released to several American companies for beta testing.
Thus during the past year efforts by grant personnel include distribution of the algorithm to
American Industry, maintenance of the algorithm, and providing a users hot-line support. In
addition, an interface for the COSMOS/M (version 1.70) finite element program was added to
the algorithm in response to a request from the Department of Energy (DoE) Oak Ridge National
Laboratory (ORNL). This interface utilizes the sub-element technique implemented with other
C/CARES interfaces. This analytical technique is outlined in Starlinger et. al. (1992).

Several workshops on the use and implementation of the C/CARES program were
conducted. This included a workshop held in conjunction with the 6th Annual NASA HITEMP
Conference. Another workshop was held that preceded a biannual meeting reviewing the
progress of the DoE Continuous Fiber Ceramic Composite (CFCC) program. These workshops
provide American industries the basic reliability concepts and focus attention on the stochastic

tools available in the C/CARES algorithm.



Interactive Reliability Model (1994-1995)

Details concerning the implementation of the Tsai-Hill interactive failure theory into a

reliability model were investigated. Other interactive failure criteria came under consideration
during this time period. These criteria focus on stochastic models for components fabricated
from intermetallic material systems. These material systems exhibit brittle failure characteristics
and a significant amount of scatter in failure strength. Additionally, the material strength varies
depending on material direction. Tt was anticipated that these failure patterns could be captured
through the use of models similar to that developed under this grant in previous years. A
summary of this approach covering material characterization through component reliability

analysis was presented at the 7th Annual HITEMP meeting (see Palko et. al,, 1994).

Alternative Fiber Architectures (1994-1995)

A literature review was conducted that focused on design strategies for these material
with alternative fiber architectures, which included two- and three- dimensional weaves. The
information from the review proved essential as grant personnel become involved in a CMC

nozzle project being coordinated by the NASA Marshal Space Flight Center.

Publications (1994-1995)
/1. "Reliability Analysis of Single Crystal NiAl Turbine Blades," J.L. Palko, S.F. Duffy,

J.A. Salem, R.D. Noebe, D.R. Wheeler, and F. Holland, Presented at the 7th Annual
HITEMP Review, October 24-26, 1994, Westlake, OH.

V2. "Reporting Strength Data and Estimating Weibull Distribution Parameters for Advanced
Ceramics," S.F. Duffy, G.D. Quinn and C.A. Johnson, ASTM Standard Practice C 1239 -
94,
v 3. "Composites Research at NASA Lewis Research Center," S.R. Levine, S.F. Duffy, A.

Vary, M.V. Nathal, R.V. Miner, S.M. Amold, M.G. Castelli, D.A. Hopkins, and M.A.
Meador, Composites Engineering, Vol. 4, No. 8, pp. 787-810.

v 4. "An Overview of Engineering Concepts and Current Design Algorithms for Probabilistic
Structural Analysis," S.F. Duffy, J. Hu, and D.A. Hopkins, in Proceedings of the 1995
Design Engineering Technical Conferences - Volume 2, DE-Vol. 83, Boston,
Massachusetts, pp. 3-16, September, 1995.

Time Dependent Reliability Analyses (1995-1 998)

Expanding use of ceramic based material systems in high temperature applications has

increased the need for robust analytical tools that particularly focus on life. As processing



technologies advance, design methodologies must keep pace to provide the ceramics community
with the appropriate set of analytical tools. Historically, two government agencies, the
Department of Energy (DOE) and NASA, have sponsored research and development efforts in
this area. Several design tools have been made available to the engineering design community
that aid the design engineer in the analysis of components fabricated from ceramic material
systems. One of the more popular algorithms is the NASA CARES (Ceramic Analysis and
Reliability Evaluation of Structures) program which enables the prediction of component
reliability for complex multiaxial stress states. This algorithm has been released to over 100
industrial institutions world-wide. In addition, a derivative of the CARES program (referred to
earlier in this report as the C/CARES algorithm) has been developed for ceramic matrix
composites. These integrated design programs are of great use to the companies involved in the
fabrication of ceramic components or sub-systems such as segments of the automotive,
aerospace, biomedical and electronics industries. Given the fact that the composites segment of
the market is not a commercial success yet and the technologies needed to design components
are relatively new, these industries have relied heavily on the government for analytical support
when designing with these material systems. Specifically, several generations of the CARES
program and other derivatives of this algorithm have been widely accepted by the design
community. The original version of CARES addressed fast fracture of ceramic material systems.
Later versions have included parameter estimation capabilities, and one current derivative
concentrates on time dependent as well as cyclic loading issues (CARES/Life). During this time
period efforts focused on providing support to make this software user friendly and
computationally efficient. ~Specifically, work focused on error checking the CARES/Creep
algorithm which is in the beta release phase. Likewise, work began on developing a time
dependent version of the C/CARES algorithm. The CCARES/Life program is evolving, and
assistance in developing this algorithm continued to the end of this research effort.

One shortcoming of the subcritical crack growth and creep damage theories is the fact
that when implemented in a design analysis elastic stress fields are utilized. In addition, the
assumption that the material behaves the same in tension and compression presents another
possible area of improvement. A number of constitutive theories for materials that exhibit
sensitivity to the hydrostatic component of stress have been proposed that characterize

deformation using time-independent classical plasticity as a foundation. One such criterion for



concrete, proposed by Willam and Warnke (1975) admits a dependence on the hydrostatic
component of stress and explicitly allows different material responses in tension and
compression. Several formulations of their model exist, i.e., a three-parameter formulation and a
five-parameter formulation. For simplicity the work presented here builds on the three-parameter
formulation. The aforementioned theories are somewhat lacking in that they are unable to
capture creep, relaxation and rate-sensitive phenomena exhibited by ceramic materials at high
temperature. When subjected to elevated service temperatures, ceramic materials exhibit
complex thermo-mechanical behavior that is inherently time dependent, and hereditary in the
sense that current behavior depends not only on current conditions, but also on thermo-
mechanical history. This work presents the formulation of a macroscopic continuum theory that
captures these time dependent phenomena. Specifically, the overview contained in this paper
focuses on the complete multiaxial derivation of the constitutive model, and examines the
attending geometrical implications when the Willam-Warnke yield function is utilized as a scalar
threshold function. In response to this, efforts funded under this grant have focused on the
development of a multiaxial constitutive theory for deformation that addresses these critical
issues and can be applied to ceramic materials. This work has been published in a paper by
Janosik and Duffy (1998).

Publications (1995-1998)

+ 1. "Comparison of Tension and Flexure to Determine Fatigue Life Prediction Parameters at
Elevated Temperatures," S.R. Choi, J.A. Salem, and JL. Palko, in Life Prediction
Methodologies and Data for Ceramic Materials, ASTM STP 1201, C.R. Brinkman and
S.F. Duffy, Eds., American Society for Testing and Materials, 1994, pp. 98-111.

2. "A Viscoplastic Constitutive Theory for Monolithic Ceramics - L" L.A. Janosik and S F.
Duffy, Transactions of the ASME - Journal of Engineering for Gas Turbines and Power,
Vol. 120, No. 1, pp. 155-161, January, 1998

3. "Design with Brittle Materials," S.F. Duffy and L.A. Janosik, in Engineered Materials
Handbook: Volume 20 Material Selection and Design, G. Dieter, volume chair, ASM
International, pp. 622-638, 1997.
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ABSTRACT }

New methods are presented that utilize the optimization of
goodness-of-fit statistics in order to estimate Weibull parame-
ters from failure data. It is assumed that the underlying
population is characterized by a three-parameter Weibull
distribution. Goodness-of-fit tests arc based on the empirical
distribution function (EDF). The EDF is a step function,
calculated using failure data, and represents an approximation
of the cumulative distribution function for the underlying
population.  Statistics (such as the Kolmogorav-Smirnov
statistic and the Anderson-Darling statistic) measure the
discrepancy between the EDF and the cumulative distribution
function (CDF). These statistics are minimized with respect to
the three Weibull parameters. Due to noalinearities encoun-
tered in the minimization process, Powell’s numerical optimiza-
tion procedure is applied to obtain the optimum value of the
EDF. Numerical examples show the applicability of these new
estimation methods. The results are compared to the esti-
mates obtained with Cooper’s nonlinear regression algorithm.

INTRODUCTION

Typically, structural analysis techniques used to estimate
the reliability of components fabricated from ceramic material
systems (see Thomas and Wetherhold, 1991, and Palko et al.,
1993) assume that the random strength parameters are

1 National Research Council; Currently with Airex Composite
Engineering
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characterized by a Weibull probability density function (PDF).
This broad assumption, i.c., the use of a Weibull distribution
as opposed to the use of other distributions such as a log-
normal probability distribution necessitates some reflection. A
wealth of experience indicates the Weibull distribution works
well for monolithic ceramics. In fact, as Tracy et al. (1982)
point out, if a structural component can be adequately
modeled as a weakest link (or series) system, then the PDF of
choice is the Weibul! distribution. Alternatively, for parallel
systems the log-normal distribution is appropriate. The
structural analysis community has for the most part adopted
the viewpoint (based on supporting experimental evidence)
that monolithic ceramics behave in a weakest link fashion.
However, very little failure data exists for laminated ceramic
matrix composite (CMC) material systems, and definitely not
enough to justify the use of a specific probability density
function.

Accepting the use of a Weibull distribution for monolithic
ceramics, the authors point out that several researchers
(Margetson and Cooper, 1984 Duffy et al., 1993 and Foley ct
al,, 1993) have presented data indicating certain monolithic
ceramics exhibit threshold behavior. In addition, a thresbold
in the fiber direction of ceramic composites is intuitively
plausible. The existence of 2 threshold for any type of ceramic
material system should be approached with an open mind until
a sufficient data base is assembied for a specific material
system. If a material clearly exhibits zero-threshold behavior,
and the underlying population can be characterized by the
Weibull distribution, the very robust two parameter maximum



likelihood estimation algorithm is recommended (sce ASTM
Standard Practice C-1239). Alternatively, if the failurc data
suggests a threshold, then the estimation techniques presented
here may apply.

In general, the objective of parameter estimation is to
derive functions (or estimators) that yield, in some sense,
optimized values of the underlying population parameters.
Here the functional value of an estimator is a point estimate
(in contrast to an interval estimate) of the true population
parameter. The estimated values must be dependent on
failure data. The values of point estimates computed from a
number of samples obtained from a single population will vary
from sample to sample. Thus the estimates can also be
considered statistics. A sample is a collection (i.c., more than
one) of observations taken from a well defined population,
where a population represents the totality of observations
about which statistical inferences are made. Here, the
observations are the failure strengths of test specimens
fabricated from ceramic material systems (where the system
may be monolithic or composite).

As Stephens (1986) points out, the empirical distribution
function (EDF) was originally developed as an aid in measur-
ing the performance of a given parameter estimation tech-
nique. Statistics directly related to the EDF are appropriatcly
referred to as goodness-of-fit statistics. In this article, good-
ness-of-fit statistics are utilized in directly computing parameter
estimates, instead of the more traditional role of quantifying
the performance of an estimator. Methods are proposed
where parameter estimates are obtained by optimizing EDF
statistics. Specifically, the first parameter estimation method
minimizes the Kolmogorov-Smimov goodness -of-fit statistic
(D). A second estimation method that minimizes the Ander-
son-Darling goodness-of-fit statistic estirator (A% is also
presented. The effectiveness of these estimation methods are
studied by comparing results with the least-squares method
originally developed by Cooper (1988), and later modified by
Duffy et al. (1993).

GOODNESS-OF-FIT STATISTICS

The EDF is a step function, denoted here as Fy(x), that is
dependent on the number and individual values of failure
observations within a sample. The function serves as an
appraximation of the cumulative distribution function for the
underlying population. Statistics associated with the EDF, such
as the Kolmogorav-Smirnov statistic and the Anderson-Darling
statistic are measures of the discrepancy between the EDF and
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the cumulative distribution function (CDF), which is ideatified
as F(x). Thus a decision regarding the type of CDF (or PDF)
must be made a priori in order to calculate cither EDF
statistic. Traditionally, the EDF statistics have been employed
to assess the relative merits in choosing a particular CDF.
Focusing attention on the Weibull PDF, the three parameter
function has the form

-3 )

8 e B M

for a continuous random variable x, when O < y < x, and

Ax) =0 3]
for x < y. The Weibull CDF is given by the expression

ri <1 - em - (5] @
for x > y, and

F(x)=0 @)

for x < y. Here « is the Weibull modulus or shape parame-
ter, B is the material scale parameter, and vy is the threshold
parameter. B can be described as the Weibull characteristic
strength of a specimen with unit volume loaded in uniform
uniaxial tension. The parameter B has units of stress *
(volume)¥®, « is dimensionless, and yhas the units of stress.
The estimates for @ and B are restricted to non-negative
values, and estimates of y are restricted to non-negative values.

The first goodness-of-fit statistic discussed is the Kolmogorov-
Smirnov (KS) statistic. This goodness-of-fit statistic (denoted

as D) belongs to the supremum class of EDF statistics, and is
defined as

D w sup |Fylx) - F(x)| &)
= max (D°.D")
where
D* = sup (F\(x) - F(x)} (6
D~ = sup (F(x) - Fp(x)} ™M

Here D is a measure of the largest difference (ic., the
supremum) in functional value between the EDF and the



CDF. To facilitate computations, notation adopted by
Stephens is followed where

Z, = F(x) (8)
is used to denote the value of the CDF for an individual
failure datum, x,. By arranging the Z; values in ascending
order such that

Z,<Z,< =<2, )

where N is the number of specimens in a sample, suitablie
formulas for the KS statistic D* and D~ can be derived using
Z,ic,

D‘-m:u{——} for1 ci<N (10)

D- 2 (11)
When applying the concepts above to strength data of ceramic

materials, insertion of Eq. 3 into Eq. 8 yields

hrl-ew [ ( B ]

Here o, (Which replaces x, in Eq. 3) is the maximum stress at
failure for each test specimen. If estimated values of «, B, and
y were available, the KS statistic would be obtained from Eqgs.
10 and 11. Typically, maximum likelihood techniqucs'and
linear regression methods have been employed to determine
estimated values of &, B, and y. Alternatively, the authors
propose to directly minimize the KS statistic with respect to
the parameters a, B, and y. Powell’s optimization method
(discussed in the pext section) is applied to obtain the mini-
mum value of this statistic. The results, which correspond to
the minimum value of D, are estimates of the three Weibuli
parameters (i.c. &, f, and 7). Utilizing Egs. 3 and 8 assumes
that the test specimen geometry is a unit volume and the
specimen is subjected to a uniaxial tensile stress. To circum-
vent this restriction, the expression

v -]

is substituted for tensile specimens where all failures occur
within the volume (V;) of the gage section. Here &, fi,andy
represent estimated values of the underlying population

12

(13)

parameters.
Two basic failure populations were admitted in the formula-

tions presented here, i.e., failures attributed to surface flaws
and those due to volume flaws. This traditional approach of
grouping failure origins into volume and surface flaws is an
artifact from parameter estimation techniques developed for
monolithic ceramics. Due to the lack of experimental data,

 this division (which must be based on fractographic analysis)
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may, or may not be appropriate for ceramic composites. At
the present time, maintaining uniform densitics throughout the
bulk of a ceramic composite material is a major impediment
that restricts the widespread commercialization of ceramic
composites. Therefore, it is anticipated that the majority of
failures will initiate within the volume of a ceramic composite.
However, this may change as processing techniques are
improved. If failures occur along the surface of the tensile
specimen, the expression

ool o[

is used where A, is the surface area of the gage section for the
tensile specimen.

Since the individual failure data (o,) represent the failure
strength of a given ceramic test specimen, the estimators
presented here were formulated for two widely used test
configurations: the four-point bead test and the uniaxial tensile
test (which was discussed above). Currently, the four-point
bend-bar is the more popular test geometry used in strength
tests of ceramic materials. When failures occur within the
volume of a bend-bar specimen, the exprcssion_for Z, takes
the form

_ - | 8 o, -
Z, =1 ‘W{ 2(5*1)( °l]

=]
B

This expression corresponds to pure bending. This is an
acceptable assumption whea failure of all test specimens within
a sample occurs between the inner loads depicted in Figure 1.
Ignoring observations that fail outside the gage section will
effectively censor the sample, and the methods presented here
will not be valid. In Eq. 15, V, represents the volume of the

bend-bar specimen within the inner load span. Using this
expression for Z;, the KS statistic D is once again minimized

(4

(15)



with respect to the three Weibull parameters. Using Powell’s
optimization method, the results are the three Weibull
parameters that minimize the statistic D for a given sample
(ie. @, B, and 7).

If failure of the bend specimens is due to surface flaws,Z;
takes the form

1 oo gt 5]

2] |

The dimensions A and b are the height and thickness of the
bar, as identified in Figure 1. Once again failure observations
must occur between the inner load span (i.c., the region of
pure bending) for reasons mentioned above.

The Anderson-Darling (AD) statistic (A2) is the second
goodness-of-fit statistic considered. This statistic belongs to the
Cramer-von Mises class of quadratic statistics and is defined by
the expression

(16)

A » N[ Fu)fQ)f (FG) O-F)' dFE) (17

where the terms fix), Fy(x), F(x),and N have been previous-
ly defined. Using the notation developed for the KS statistic,
the AD statistic can be expressed as

N B
A= N - (MY (@ [InZen(l - Zea )]} (&)

As before the sum of Z, depends on the test configuration and
the failure mode (assuming that the Weibull distribution
characterizes the underlying failure population). For the case
where the uniaxial tensile test is used, and failure is the result
of volume flaws, Z, takes the form given in Eq. 13. When
failures of a uniaxial tensile specimen are due to surface flaws,
Z, takes the form given in Eq. 14. For the case where a four
point bend configuration is used, and the failures

are the result of volume flaws, the Z; function is given by
Eq. 15. When failures of four point bend tests are the result
of surface flaws, the form for Z, is given by Eq. 16.

POWELL'S OPTIMIZATION METHOD
As noted previously, Powell’s optimization method (see Press
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ct al., 1986) minimizes the EDF statistics for cach specimen
configuration presented above. This optimization method is an
iterative scheme, where the search for a minimum functional
value is conducted along a specified set of direction vectors.

The number of direction vectors corresponds to the number of
parameters(constrained or unconstrained) associated with the
function. The EDF statistics (i.c., the function being opti-
mized) will depend on specimen geometry, individual failure
obscrvations, and the estimated parameters &, §, and 7.
However, the specimen geometry will not change for a given
sample, thus the EDF statistics are optimized with respect to
the parameters «, B, and y. In essence this method locates, in
succession, an optimum poiat along each direction vector. An
arbitrary set of direction vectors can be utilized to

optimize a given function; however, Powell’s method employs
noninterfering (or conjugate) directions in order to speed
convergence. This alleviates difficulties which arise when
optimization along one direction vector is disturbed by a
subsequent search along a new direction vector. The method
formulates and updates n mutually conjugate directions, where
n (for this case equals three i.c., «, p, and y) defines the size
of the parameter space. The sct of direction vectors is
updated by discarding the direction vector that produced the
maximum change during an iteration. The average direction
defined by the initial and final point of an iteration is substitut-
ed, and becomes the initial direction vector for the npext
jteration. Note that this method does not produce quadratic
convergence, but nevertheless is very robust.

As indicated above, the optimized parameter space is defined
by the estimates of the Weibull parameters «, B, and vy. Since
a good choice of starting values (&, Bo, and ¥o) is essential
in quickly locating the optimum point, the results of Cooper’s
modified least-squares estimation method are used as the
initial vector for Powell’s method. Further restrictions are
imposed on the optimization process. Negative values for the
estimated Weibull parameters, and estimated threshold
parameters (¥) larger than the smallest failure stress in a
given sample, are not physically meaningful. Thus directions
that produce these parameter values are discarded in the
update of the direction vectors, and parameter values are reset
to the minimum allowable values.

Example

Since failure data for CMC material systems are sparse, only
failure data for a monolithic sintered silicon nitride (grade
SNW-1000, GTE Wesco Division) are used to illustrate the



relative merits of the proposed estimation techniques. This
data was published by Chao and Shetty (1991) and is reprinted
in Table 1. These values represent the maximum stress at
failure for 27 four-point bend specimens. The outer support
span for the test fixture was 40.4 mm, and the inner load span
was 19.6 mm. The cross sections of the test specimens were
4.0 mm wide, and 3.1 mm in height. All failures occurred
within the 19.6 mm inner icad span, thus it was assumed that
cach specimen was subjected to pure bending.

Chao and Shetty performed a fractographic analysis of each
specimen using optical and scanning electron microscopy.
These studies indicated that all failures were initiated at
subsurface pores (i.c., volume defects). Hence, equations for
bending associated with volume defects are used for parameter
estimation. Five methods were used to estimate the Weibull
parameters from this set of failure data. These were Cooper’s
three parameter least squares method, the three parameter
modified least squares method outlined by Duffy et al. (1993),
minimizing the KS statistic, minimizing the AD statistic, and a
two parameter estimation using the maximum likelihood
estimation technique outlined in the ASTM Standard Practice
C-1239. The Kolmogorov-Smirnov statistic (D) and Anderson-
Darling statistic (A2) were computed for cach set of parame-
ter estimates. The values of these EDF statistics, and the
estimated parameters for each method are listed in Table 2.

A comparison of estimates obtained by both least-squares
methods shows small differences in the estimated Weibull
threshold parameter y. Larger differences are present
between the two methods in the estimates of the other
parameters. Specifically, the modified least squares method
provided a higher estimate for & than did Cooper’s method,
and a lower estimate for §  Furthermore, both goodness-of—~
fit statistics (D and A2) are smaller for Cooper’s method than
for the modified least- squares method. Duffy et al. (1993)
demonstrated that the modified least squares method is
theoretically more rigorous than Cooper’s original work since
the modified method attempts to minimize a true residual.
However, it is apparent from this exampie that Cooper’s
original approach yields better goodness-of-fit statistics. This
discrepancy in part motivated the development of estimators
based on minimizing goodness- of-fit statistics.

Estimates of the Weibull parameters obtained by minimizing
the KS statistic result in the smallest value of D, which is not
surprising. Similarty, estimates of the parameters obtained by
minimizing the AD statistic result in the smaliest value ofA?
in comparison to the other estimation methods. However, the
Weibull parameters obtained by optimizing the goodness-of-fit
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statistics differ considerably from the estimates obtained using
the least-squares techniques. Specifically, the value of B from
minimizing the goodness-of-fit statistics is pearly twice the
value obtained with the least-squares techniques. As an
additional comparison, parameter estimates from using a
maximum likelihood estimator assuming a two-parameter

“Weibull distribution are included in Table 2. These estimates

produce the highest values for both goodness-of-fit statistics.

Finally, cumulative distribution functions for all of the
parameter estimates are plotted on a single Weibull diagram
(see Figure 2). All of the failure data fall relatively close to all
four of the three-parameter curves. This type of visual
assessment (along with its highly subjective interpretation)
should provide the motivation for the use of quantitative
measures in determining the goodness-of-fit.

CONCLUSION

New methods of parameter estimation are proposed that are
based on the minimization of goodness-of-fit statistics. These
methods are used to estimate Weibull parameters from failure
data whose population is assumed t0 be characterized by a
three-parameter Weibull distribution. As an example, the
proposed methods were compared with other parameter
estimation methods, using failure data from a monolithic
ceramic material. The proposed methods provided a better fit
to the failure data in terms of the EDF statistics. However,
to completely test the proposed methods, performance criteria
like bias and invariance have to be evaluated through the use
of Monte Carlo simulations.



TABLE 1 FOUR-POINT BEND FAILURE DATA FOR
SILICON NITRIDE.
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& & Specimen No. Strength (MPa)

Test Specimea -l:. 1 6139

& & -+ 2 6234

b — 3 6393
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7 669.5

8 6728
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TABLE 2 PARAMETER ESTIMATES OBTAINED FROM FOUR-POINT BEND FAILURE DATA.

Estimation Method a f (MPa-mm¥®) Y (MPa) D (x 10%?) A% (x 107")
Cooper's Least Squares 1.625 89237 560.84 9.404 1.749
Modified Least Squares 1.677 861.93 558.08 9.538 1.798
KS Estimator 1.375 1298.44 558.08 6.080 1.963
AD Estimator 1.168 1537.03 581.09 7.676 1.406
Two-Parameter MLE 10.119 974.09 0.00 11.20 5.394
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DESIGN OF A LAMINATED CMC HEAT EXCHANGER
USING THE C/CARES ALGORITHM

JOSEPH L. PALKO and Stephen F. Duffy
Department of Civil Engineering
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Cleveland, Ohio 44115

INTRODUCTION

Ceramic matrix composites (CMC) are under consideration in a number of commercial
applications where components are exposed to severe service environments. However, before design
engineers are willing to utilize a component fabricated from a ceramic composite they must have
confidence in their ability to predict the response of the component prior to placing it in service. This need
to predict component behavior initially arises from a desire to achieve a certain level of product function,
and continues through the product life cycle with design upgrades. Thus commercialization of ceramic
matrix composites (which has been an objective of a number of federally funded research programs
including HITEMP) requires sound predictive capabilities predicated on coherent design methodologies.
The C/CARES (Composite Ceramics Analysis and Reliability Evaluation of Structures) algorithm was
specifically developed to contribute towards achieving this objective.

The ongoing metamorphosis of CMC systems and the lack of standardized design data has in the
past tended to minimize the emphasis on modeling a component based on sound engineering principles.
Prototypes were fabricated and designed by trial and error, since demonstrating feasibility took precedent
over characterizing component behavior. This is understandable during periods of rapid improvements in
material properties. The research effort that spawned the C/CARES algorithm required the development
and implementation of a rational structural design protocol. In order to ascertain the utility of the
C/CARES algorithm, a joint feasibility study of an advanced heat exchanger (AHX) was undertaken. The
heat exchanger is a prototype being developed by Babcock & Wilcox under a project funded by the
Department of Energy. The AHX is a critical component of a waste heat recovery system placed in the
exhaust path of an industrial furnace (ref. 1) that produces highly corrosive flue gases. Due to this
corrosive environment a ceramic composite was selected for the AHX. ‘

Research engineers at Babcock & Wilcox have generally recognized that the scatter in strength
associated with ceramic material systems poses a unique design constraint. They have also recognized the
need to utilize current technology available in all sectors of the ceramic community. The C/CARES
algorithm (developed under the auspices of the NASA HITEMP program) represents unique design
technology that is able to account for variability in material strength by utilizing a stochastic failure criterion
which also reflects the anisotropic nature of ceramic composites. The authors (who are resident research
associates at NASA Lewis Research Center) were invited to join the design project team in an advisory
capacity. This type of partnership allows for an immediate transfer of state-of-the-art technology from
government to industry. It also permits federally sponsored researchers to gain valuable insight into key
issues that drive commercial application of research concepts. American industries benefit from this
technology transfer since they obtain a high level of technical insight from individual researchers who have
spent years studying certain aspects of a research concept. In turn the government receives valuable input
regarding applications that either validate or redirect research efforts. Also under certain limited
conditions, performance data (some of which is proprietary) is made available to federal researchers who
participate in the design project. This type of open interaction (where industry is protected by proprietary
and/or space act agreements) is essential in making the partnership a success and has a tendency to shorten
the research innovation cycle.

THE C/CARES ALGORITHM

C/CARES is a computer algorithm based on probabilistic design philosophies (ref. 2 and 3), and
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was developed specifically for laminated composites. A macroscopic approach is taken where a material is
treated as an homogenized continuum; hence, the individual properties of the constituents are not
accounted for explicitly. A weakest link formulation is used at the ply level. The failure function currently
used in C/CARES accounts for five failure modes in each ply.- These include failure in the fiber direction
due to tension and compression, failure due to tension and compression in the direction transverse to the
fiber, and an in-plane shear failure. Each failure mode is characterized by a three-parameter Weibull

distribution.

The recently completed ABAQUS interface is used to import information pertaining to the stress
analysis and component geometry generated by ABAQUS to the C/CARES algorithm. This interface
supports the subelement technique described in ref. 3. The stresses are provided at the integration points
of each finite element; thus reliability is evaluated within a subelement that is defined by an integration
point. The use of the subelement technique refines a reliability prediction for a component since the stress
field is more accurately characterized. The reliability of each ply is computed using the following
expression

R, = exp [ [ v,dV] 0
v,
where ¥, is the failure function per unit volume given by the expression

Y- [M]' . (ﬁ(f’r - v:)})‘t . [gm - ,,»]-.

P B2 Bs @
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and ¥, is the volume of the ply. The termog is the stress in the fiber direction, oy is the stress in the
direction transverse to the fiber, and « is the in-plane shear stress. The a's, p's and y’s are the Weibull

_parameters for the individual failure modes. The component reliability (Roomp) is the product of the
individual ply reliabilities, ie.,

R =TI R, @

where a is the number of plies in the finite element model. A flow chart of the C/CARES algorithm is
shown in Figure 2.

DESIGN APPLICATION

The AHX is a key component of an innovative waste heat recovery system that will be placed in
an industrial furnace downstream of the flue exhaust. A schematic of the system and the CMC tube are
shown in Figure 3. The proposed waste heat system is an array of nine bayonet-type heat exchangers,
where each bayonet consists of two concentric tubes. The outer tube is fabricated from a ceramic
composite that consists of a zirconia matrix and an alumina-zirconia fiber. Ceramic insulation surrounds
the top of the outer tube and serves as an expansion joint between the tube and the plenum. The inner
tube, which is not exposed to process flue gases, is fabricated from kanthal. The stainless steel tube
connects to an upper plenum, which serves as the inlet for clean supply air which is recirculated. The clean
supply air enters the upper plenum, proceeds down the inner tube, exits the base of the inner tube,
reverses direction and moves up between the stainless steel and ceramic composite tubes. As the clean air
travels up the bayonet, it is heated from the flue gas passing along the outside of the ceramic composite
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tube. The heated air collects in the lower plenum located at the top of the ceramic section of the bayonet.
At this point, the preheated air begins the return path back to the combustion section of the process.
Discussions here regarding the design application will focus on the CMC portion of the AHX.

During the feasibility study a stress analysis for the AHX was conducted using the ABAQUS finite
element program. PATRAN was used for the pre- and post- processing of the finite element model. The
C/CARES algorithm maintains interfaces for both of these commercially available codes (as well as others,
see ref. 2). A schematic of the finite element mesh is depicted in Figure 4. A total of 1656 elements was
used to model the outer CMC tube and the surrounding insulation. Of these 1656 elements 1296 QUAD/S
elements were used to model the laminated CMC tube, and 360 HEX/20 elements were used to model the
insulation surrounding the tube, and the built-up flange of the tube (which is hidden in this particular view).
The built-up flange was fabricated from several unidirectional plies where the fibers in each ply were
wound in the hoop direction (0°). It was determined during preliminary design analyses that the flange
section of the bayonet and the insulation were not critical subcomponents. The insulation, which is
relatively more compliant, was modeled as an isotropic material.

The temperature distribution depicted in Figure 5 was applied along the length of the tube. This
temperature distribution was obtained from a thermal analysis which was conducted as part of the
feasibility study. The resulting thermal stresses were three orders of magnitude larger than any stresses
resulting from internal pressure or dead load (19 psi (0.13 MPa) and 42 psi (0.29 MPa), respectively).
Hence mechanical loads were neglected during preliminary analyses. An initial design guideline suggested
that allowable stresses in the fiber direction would be maintained at or below 12,000 psi (82.73 MPa). For
the thermal distribution presented here, this particular design condition was met. Figure 6 depicts the hoop
stress distribution (o, ; i.e., stress in the fiber direction) in the inner layer resulting from the applied
temperature distribution shown in Figure 5. Note that a2 maximum tensile stress of 11,927 psi (82.18 MPa)
is present in the inner layer, and a maximum compressive stress of -12,432 psi (-85.66 MPa) is present in
the outer layer of the tube (both of which occur in the fiber direction).

The reliability analysis of the four-ply laminate outer tube begins with the specification of the
Weibull parameters. The parameters used in the analysis of the AHX are listed in Table 1. These
parameters were chosen arbitrarily since failure data was not available at the time of this analysis. A data
base for each failure mode must be assembled in order to uniquely characterize the material. Note thata
conservative assumption was made by taking the threshold parameter equal to zero for each failure mode.
This implies that a finite probability of failure exists for each failure mode at all stress levels. The overall
component reliability of the AHX was 99.97%. The least reliable ply was the inner ply with a reliability of
99.97%. The other plies had a reliability of 100%.

During the course of the design analysis, it was determined that the critical design parameter from
a reliability standpoint is the shape parameter for the tensile strength in the direction transverse to the
fiber («,). In the initial reliability analysis, a value of 15 was used for this parameter. Table 2 shows the
effect that variations of this parameter have on the reliability analysis while all other Weibull parameters
remain the same. Note that for values of a, below 7, reliability drops off significantly. This indicates that
the shape parameter for this failure mode must be at this level or higher for this component to maintain a
reliability of 90% for this given load.

REFERENCES
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TABLE 1: Weibull Parameters

a B Y
(psi - V') s
Fiber - Tensile | 25.0 17,500 0.0
Transverse - Tensile 15.0 : 12,500 0.0
In-Plane Shear 220 7,500 0.0
Fiber - Compressive 30.0 50,000 0.0 a
Transverse - Compressive 30.0 40,000 0.0

TABLE 2: Reliability as a Function of the Transverse Tensile
Shape Parameter -

o, Reliability , %
15.0 99.97
125 99.83
10.0 99.00
15 94.19
7.0 91.78
6.5 88.42
6.0 83.80
55 77.56
5.0 69.36
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OBJECTIVE

Incorporate a reliability analysis into the design of
a laminated ceramic composite heat exchanger

APPROACH

Utilize the C/CARES algorithm and the recently completed
ABAQUS interface to conduct the reliability analysis
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SUMMARY

Reliability study of the AHX was conducted

Preliminary reliability analysis focused on a single
critical parameter

All parties involved benefit from Government/Industry
interaction

© AgT ©D-93-66366

FUTURE DIRECTION

Parameter estimates for each failure mode must be
obtained from experimental data base

Time dependent failure behavior must be addressed

Fig. 8 €0-93-66367
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INTERACTIVE RELIABILITY MODEL FOR WHISKER-TOUGHENED CERAMICS

Joseph L. Palko
Cleveland State University
Cleveland, Ohio

ABSTRACT

Wider use of ceramic matrix composites (CMC) will require the development of advanced structural
analysis technologies. This report focuses on the use of an interactive model to predict the time-independent
reliability of a component subjected to multiaxial loads. The deterministic, three-parameter Willam-Warnke
failure criterion serves as the theoretical basis for the reliability model. The strength parameters defining the
model are assumed to be random variables, thereby transforming the deterministic failure criterion into a proba-
bilistic criterion. The ability of the model to account for multiaxial stress states with the same unified theory is
an improvement over existing models. The new model has been coupled with a public-domain finite element
program through an integrated design program. This allows a design engineer to predict the probability of
failure of a component. A simple structural problem is analyzed using the new model, and the results are com--
pared to existing models. -

CHAPTER 1

INTRODUCTION

The ability of structural components, fabricated from both monolithic and composite ceramic material
systems, to maintain their structural integrity while subjected to thermomechanical loads is beginning to capture
the attention of many design engineers. Attractive properties such as low density, high strength, high stiffness,
creep resistance, and corrosion resistance are allowing ceramic materials to supplant metal alloys in numerous
applications. Current applications include heat exchangers, cutting tools, and wear parts. Larsen and Vyas
(1988), Buljan, Pasto, and Kim (1989), and Clarke (1990) present commercial data regarding the expanding use
of ceramic components for these rigorous applications. Unlike some metal alloys used in demanding service
conditions (notably the superalloys), ceramic components are fabricated from nonstrategic materials. This has
helped spur research efforts in both processing technology and structural analysis. This report focuses on issues
related to the field of structural analysis, where design protocols are replacing the ad hoc trial-and-error method
of developing and testing structural prototypes.

In the field of material science, efforts to improve the structural performance of ceramic materials include
adding a second ceramic phase to the matrix. This second phase can take the form of whiskers, short (usually
chopped) fibers, continuous fiber reinforcement, and woven fabrics. This report will focus on ceramic com-
posites that incorporate whisker reinforcement (and under certain conditions, particulate reinforcement). The
addition of whiskers improves the failure behavior of the material system by arresting crack growth in the
matrix by pinning, bridging, and deflecting cracks. The improvement of fracture toughness, usually in certain
material directions, is dependent on processing. As a result, this material can exhibit anisotropic behavior. How-
ever, if the whiskers are homogeneously distributed and randomly oriented, the isotropic nature of the matrix
material is preserved. The work presented here will deal exclusively with the isotropic whisker-toughened
material system. Analytical efforts that allow for material anisotropy are mentioned in chapter V.

Even though the second phase enhances the failure behavior of the material, whisker-toughened ceramics
still fail in a brittle fashion. In addition, there is a great deal of intrinsic variability in the strength of this
material. Failure of structural components fabricated from whisker-toughened ceramics is governed by random
flaw populations inherent to the material’s microstructure. Usually these material imperfections are generated
during processing. It is assumed that the location and orientation of the flaws are randomly distributed



throughout a component. The resulting scatter in failure strength of these materials requires a departure from
traditional design philosophies. The random nature of the microstructural flaws forces the design engineer to
rethink the design- philosophy that treats material strength as a single-valued design parameter. For monolithic
ceramics. the factor of safety approach (a deterministic design procedure commonly used for metal alloys) has
been abandoned in favor of a reliability-based approach. Work by Gyekenyesi (1986), Cooper, Margetson, and
Humble (1986), and Lamon (1990) are representative of the reliability design philosophy used in analyzing
structural components fabricated from monolithic ceramics.

Adopting a similar probabilistic philosophy for the structural analysis of a component fabricated from
whisker-toughened material allows the design engineer to account for brittle behavior, variability in strength,
and decreasing bulk strength with increasing component volume (the so-called size effect). Using probabilistic
methods, the component is discretized using finite element techniques, and each discrete element is treated as a
link in a chain. Philosophically, this means that when one element fails, the component fails. Thus the com-
ponent is only as strong as the weakest link in the chain. From the standpoint of reliability theory, the compo-
nent is treated as a series system, where failure of the system occurs when one of the subsystems fails.
Alternatively, in a parallel system, failure of a single subsystem does not cause the system to fail since the
remaining elements of the system may sustain load through redistribution. Models that use the analogy of a
parallel system lead to what has been referred to in the literature as bundle theories. The basic principles under-
lying bundle theories were originally discussed by Daniels (1945) and Coleman (1958). Bundle theories have
been applied exclusively to long-fiber ceramic composites. Thus, further discussion of these theories will not be
pursued here. See the work of Harlow and Phoenix (1981), and Phoenix (1974, 1979) for an in-depth treatment
of the bundle theory.

In general, two categories of weakest link theories have emerged. One group is based on the principles of
fracture mechanics. The other group adopts a phenomenological viewpoint. The fracture mechanics approach
assumes that the stress state in the near vicinity of the critical crack and the orientation of the crack are the con-
trolling design variables. Material strength and crack orientation are treated as random variables. All other
design variables (e.g., load, geometry, stiffness, etc.) are treated in a deterministic fashion. In contrast, phenom-
enological reliability models take a more global approach. Only material strength is treated as a random variable
since attention is not focused on a critical flaw. Phenomenological models can be either interactive or noninter-
active. Interactive models allow functional forms that include terms that are products of different material
strengths. Noninteractive theories allow material strength parameters to appear only as separate and distinct
terms. Throughout this report, the fracture mechanics and the phenomenological criterion will be discussed for
the purpose of comparison, but the attention will be focused mainly on interactive models. In chapter II, a litera-
ture survey is presented that outlines different methods of modeling reliability.

With the exception of the work by Adams and Sines (1978), Alpa (1984), and Powers ( 1989), reliability
theories for ceramic components have neglected compressive stress states and the effect of hydrostatic stress in
particular. Models such as the principle of independent action (PIA), which was originally proposed by Barnett
et al. (1967) and Freudenthal (1968), and the familiar Batdorf theory (Batdorf and Crose, 1974) do not allow
compressive states of stress to influence component reliability. Since the compressive strength of ceramic
materials is often an order of magnitude larger than the tensile strength, compressive stress states were assumed
not to contribute to failure, or treated in an ad hoc fashion in a manner similar to Gyekenyesi (1986). Although
data in the open literature are limited, experimental evidence by Adams (1975), Ikeda and Igaki (1984) and
Tkeda. Igaki, and Kuroda (1986) clearly indicates that compressive stress states have a decided effect on ceramic
materials. The phenomenological criterion that is discussed later allows for multiaxial states of stress, and
specifically treats compressive stress in a rational manner as outlined in chapter IV. The criterion (and the
reliability model that is derived from this criterion) is unified in the sense that ad hoc rules are not used to
mode! different regions in the stress state. The analytical details of the parent deterministic failure model are



given in chapter III. Failure surfaces projected into various stress spaces are presented to illustrate different
mechanistic aspects of the theory. Finally, the tests necessary to determine the parameters are outlined.

Casting the deterministic failure theory into a reliability model using Monte Carlo methods is presented in
chapter IV. Numerical aspects of the Monte Carlo simulation are discussed. Features of the interactive reliability
model are compared with existing models. The reliability model is incorporated into a test-bed software program
given the acronym TCARES (Toughened Ceramics Analysis and Reliability Evaluation of Structures), which
was originally discussed by Duffy et al. (1989). Coupling the reliability algorithm with a general-purpose finite
element program (i.c., MSC/NASTRAN) enables one to predict the time-independent reliability of a structural
component. A structural component is analyzed that illustrates the interactive model highlighted in this report.
These results are compared with an analysis made using previous models that did not allow compressive stress
states to affect component reliability. It is shown that these previous models yield unconservative results in cer-
tain situations.

Chapter V summarizes this effort and indicates future research. Future direction includes improving
numerical efficiency through the use of fast probability integration techniques proposed by Wu (1984). Applying
this type of analysis to anisotropic whisker-toughened ceramics is outlined.



CHAPTER II
SURVEY OF RELIABILITY THEORIES

Traditional failure analyses of structural components have used deterministic approaches where failure is
assumed to occur when some allowable stress level, or equivalent quantity, is exceeded. This assumes that
deformation is not controlling component design. Since structural ceramics maintain high stiffness, even at
clevated temperatures, deformation has not played a significant role in component design. Certain design
methods have attempted to incorporate the relevant physics of failure using fracture mechanics. Here the critical
design parameter is the stress intensity factor, which takes into account load and component geometry. In this
approach the stress intensity factor is compared to a fracture toughness value that is a characteristic property of
the material. However, for most structural ceramics the combination of ultimate strength and fracture toughness
(quantified by K, ) yields flaw sizes so small that current nondestructive evaluation (NDE) methods are unable
to detect the critical defect. On the other hand, phenomenological failure theories make use of macroscopic
strength parameters that do not focus on 2 critical microstructural defect. Muitiaxial failure theories can be sys-
tematically formulated using this approach if the material is homogeneous, with strength properties that can be
deduced from well chosen phenomenological experiments. Failure theories such as the maximum normal stress,
the maximum normal strain, the maximum shear stress, and the maximum distortional energy criteria are
examples of phenomenological models that are successful in predicting the onset of brittle failure or yielding.
However, for reasons mentioned in the introduction, these deterministic techniques are not relevant when
analyzing structural components fabricated from ceramic-based material systems.

Weibull (1939, 1951) proposed the first probabilistic model that accounted for scatter in failure strength
and the size effect encountered in brittle materials. His approach is based on the weakest link theory (WLT)
attributed to Midgley and Pierce (1926). This earlier research (sponsored by the textile industry) focused on
modeling yarn strength. Unlike Midgley and Pierce, who assumed a Gaussian distribution for yarn strength,
Weibull proposed a unique probability density function for failure strength that now bears his name. Weibull's
two-parameter probability density function has the following form:

| BTG

for a continuous random variable x, when x> 0, and

f(x) =0 22)

for x < 0. The cumulative distribution function is given by the expression

Flx) = | - exp[—[%]'“ } _ (2.3)

(2.4)

for x> 0, and

F(x) = 0



for x < 0. Here « (> 0) is the Weibull modulus (or the shape parameter), and B (> 0) is the scale parameter.
Reliability theories with theoretical frameworks based on Weibull’s original concepts are presented in this
chapter. Theories based on phenomenological principles and fracture mechanics theories are discussed. Initially,
Weibull's (1939) normal stress averaging technique is presented. This is followed by a discussion of the PIA
model, and recent extensions of the PIA model to composite materials. Next, a reliability model developed by
Batdorf and Crose (1974), founded on principles of fracture mechanics, is presented. Finally, a model that
accounts for compressive states of stress (Powers, 1989) is discussed.

Weibull's Normal Stress Averaging Method

Weibull adopted the weakest link theory where a brittle material is considered a chain with links connected
in series. The overall strength of a brittle component is then governed by the strength of its weakest link.
Focusing on a single link, the failure probability of an individual link can be expressed as

where AV is the volume of the link, and v is a failure function per unit volume of material. By defining
as the reliability of a single link, then

r=1- pAv (2.6)

The failure of-an individual link is assumed to be an independent statistical event, implying that the events lead-
ing to failure of an individual link are not influenced by other links in the chain. As a result, the reliability of
the component, denoted as R, becomes

X A 2.7
R = lim |[] r|= lim | T] [1 - v(oy; x,.)AvL :
N—seo| A=1 N—oo| A=1 }
where N is the number of links in the component, tp(o,-j, x;) is the failure function per unit volume at position
x; within the component, and g;; is the Cauchy stress tensor at x;. Unless noted otherwise, lowercase Roman
letter subscripts in italics denote tensor indices with an implied range from 1 to 3, and Greek letter subscripts
are associated with products or summations with ranges that are explicit in each expression. By adopting the
argument originally proposed by Weibull, the reliability of the component takes the integral form

R = exp[-— f oy x,-)dV} (2.8)

where V is the volume of the component. Similarly, the probability of failure for the component takes the form

(2.9)

Pe=1-R~= l-cxp[—L Lp(o,-j, x,-)dV

The state of stress in every link of the chain must be characterized to conduct a reliability analysis using
equation (2.8). This approach lends itself to analytical techniques that use finite element methods. If a
component is modeled as a chain with individual links connected in series, then each link would correspond to
an element within a mesh. The reliability models that are discussed in this section, and in later sections, adopt



this theoretical framework (egs. (2.5) to (2.9)) in computing component reliability, and all are amenable to finite
element methods. The differences between various reliability models occur in the formulation of the failure
function .

Weibull assumed that the failure strength of a specimen subjected to a uniaxial state of stress is a random
variable. Application of equation (2.9) for a uniaxial tensile stress field in a homogeneous isotropic material

yields
Pe=1 —cxp[—(%]avil (2.10)

where o is the applied tensile stress, and V is the volume of the specimen. For this case Weibull took the fail-

ure function (¢) as

Here k is referred to in the literature as Weibull's coefficient for a uniaxial state of stress. Weibull extended
this uniaxial model to multiaxial states of stress by defining an average tensile stress. He defined this average
tensile stress by considering the stress traction on an arbitrary plane (see fig. 2.1). Specifically the shear
component of the stress traction T is ignored, and it is assumed that only the normal component G causes
failure. To gain a clear understanding of this method, consider-a sphere centered at the origin of the coordinate
axis (X[, Xy, X3) associated with the principal directions G, 0,, and 05. The normal component of stress
traction acting on an arbitrary plane is given by the expression

G = sin? d)(cr1 cos? @ + o, sin? 6) + 0y cos? (2.12)

Here ¢ and O are the polar and azimuthal angles of the unit vector normal to the arbitrary plane in stress
space. These angles and their relationship to the coordinate axes (X;, X;, X3) are shown in figure 2.2. Since the
normal stress component varies with each planar orientation defined by ¢ and 6, Weibull defined the follow-
ing weighted average

sf"” f*e 5%sin ¢ d0 dd
o _ 0o JoO

LdA

Here A is the area of the unit sphere, and the limits of © coincide with those orientations where G changes
from a tensile stress to a compressive stress. For the limiting case where G is tensile over the entire sphere, 6
takes the value of 72. Both limits are zero if G is compressive over the entire unit sphere, and this results in
(3)* = 0. The general convention analyzes this integral over one octant of the unit sphere, which accounts for
the limits of integration for ¢ (i.c., 0 and ®2), and the factor 8 in the numerator.

(2.13)
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The quantity (5)® given by equation (2.13) is equated to 6% in equation (2.11) such that

o = k(@3)° (2.14)

where k is Weibull's coefficient for a multiaxial stress state. This coefficient is the multiaxial extension of the
parameter k defined in equation (2.11), and must be defined in a consistent fashion such that equation (2.14)
yields equation (2.11) for a uniaxial state of stress. Equating Weibull's multiaxial formulation of © defined in
equation (2.14) to the uniaxial case defined in equation (2.11) results in the following relationship (see
Gyekenyesi (1986) for details):

k= ko + 1) = 222D 2.15)
ﬁa
Thus for the multiaxial state of stress,
Pp = | -cxp H; k(3)® dV] 2.16)

from which the uniaxial form expressed in equation (2.10) can be obtained. Although the extension to multiaxial
states of stress described here is intuitively plausible, it is somewhat arbitrary because it disregards the shear
component of the stress traction. In addition, since the method lacks a closed-form solution, use of this model
requires computationally intensive numerical methods.

Principle of Independent Action Method

Barnett et al. (1967) and Freudenthal (1968) proposed an alternative to Weibull’s normal stress averaging
approach for multiaxial states of stress. Here only principal stresses are considered, and the basic assumption is
that each acts independently in reducing the survival probability of an element (hence the name principal of in-
dependent action). The failure function for this theory takes the form

(s lod
SERER]
A ol B - B -

where 0y > G, > 03 > 0. Since the principal.stresses appear in separate terms (i.e., they do not interact) in th.e
formulation of 1, this model is classified as a noninteractive reliability model. Qualitatively, the PIA theory is

equivalent in a probabilistic sense to the maximum stress failure theory.

Extensions of the PIA Method

Duffy and Arnold (1990) formulated an extension of the PIA model for transversely isotropic materials. A
unit vector was used to identify the local material orientation, and, subsequently, to define stress invariants..The
unit vector d; was introduced to define the direction normal to the plane of isotropy. Here the failure function
¢ depends on the stress state and local material orientation such that



Pp = tp(c,-j, d,-) (2.18)

Since y is a scalar valued function, it must remain form invariant. To ensure this, an integrity basis was
developed for ¢ that contained certain combinations of invariants of the Cauchy stress tensor and an orienta-
tion tensor defined as d;d.. The invariants formed an integrity basis and were used to construct other invariants
that correspond to specific components of the state of stress in an element. This approach yields the following
functional dependence

v = wltp iy 1y) (2.19)

Here i, corresponds to the magnitude of the stress vector 0;;d; projected onto the material crientation vector
d;. The invariant I, represents the magnitude of the shear component of the stress traction. The invariants i
and 14 represent the magnitudes of the maximum and minimum principal stresses in the plane of isotropy.
Thus each invariant corresponds to a strength in a well-defined material direction, and because of this the
invariants can be treated as random variables with underlying Weibull distributions. Analogous to the principle
of independent action, it is assumed that the different invariants are statistically independent such that the failure
function takes the form

oy .
! a3 &3
p - @ + I_i_z_l_ + 51_32 + fl_‘ﬁ (2:20)
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where the individual o's and B’s are the Weibull parameters associated with a strength variable in a particular

material direction. It should be noted that compressive stresses associated with (il>, (i3), and 64) are assumed
not to contribute to a reduction in reliability such that

1, >0 221)
—_ <il) = 0 il < -
i, ;>0 (222)
W=, i,<o
and
i, i,>0 (223)
W=1o 1, <0

Duffy and Manderscheid (1990) formulated an extension of the PIA model for orthotropic materials. Here
two mutually orthogonal unit vectors (a; and b;) were used to define local material directions. An integrity basis
was developed from the functional dependence



Y = w(oi,-,aib,-) (2.24)

where ab, serves asa direction tensor. Like the transversely isotropic case, the failure function depends on
certain invariants that correspond to components of the local stress tensor; that is,

v = o(T, 05T T) 225)

Here the invariants fl and f3 represent the magnitude of the normal stress components in the directions of g
and b, respectively. The invariants I, and I, represent the shear stresses across the directions a and b;
respectively. The invariant 15 represents the normal stress in the direction defined by the cross product of the
vectors a; and b;. Once again, it is assumed that the invariants are statistically independent such that

v = [Gﬁr AR, [63)]% |l X . [(fy ’ | (226)
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where the individual a’s and B's are again associated with strength variables in particular material directions.
The invariants I, I, and I are normal stresses, and do not contribute to a reduction in reliability if they are
compressive; that is, ~

- Ip I,>0 227
<Il> - -~
0o I,<o0
L, Lo (2.28)
Iy = -
0o <o
and
_ )i Is=0 (2.29)
Iy = -
5 I,<o

The reliability models for both the transversely isotropic and orthotropic materials allow the material orien-
tation to vary along a family of curves within the component. Thus the material is locally anisotropic. The
models were constructed using invariant formulations which indicate the maximum number and forms of the
stress invariants necessary to define the failure function . In both cases, a subset of the integrity basis for ¢
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was constructed, resulting in reliability models that are similar in nature to the PIA reliability model for mono-
lithic ceramics.

Batdorf's Theory—Surface Flaw_Analysis

Reliability theories based on fracture mechanics assume that failure of a component emanates from a single
flaw with a critical size and orientation. This flaw belongs to a population that in general contains surface flaws
and volume flaws. Either type of flaw is assumed to be uniformly distributed and randomly oriented. Surface
flaws are imperfections that are the result of machining, grinding, or other surface finishing operations. Volume
flaws are the direct result of processing. Both types of flaw populations exhibit different failure behavior charac-
terized by distinct strength distribution parameters. For surface flaws, the presence of a traction-free surface
reduces a three-dimensional state of stress to a state of plane stress. Because of this simplifying condition, the
details of a surface flaw analysis are presented. In general, the surface flaw analysis can be viewed as a special
case of volume flaw analysis.

Batdorf and Heinisch (1978) proposed a surface flaw model which is an extension of an earlier volume
flaw analysis proposed by Batdorf and Crose (1974). This two-dimensional theory is based on weakest link prin-
ciples, and accommodates mode I, mode II, or mixed mode fracture criteria. For the following discussion, the
coplanar strain energy release rate, a mixed mode criterion, is used. This criterion allows for mode I and

mode II behavior, and takes the form
K Ky [
N I W LIS R (2.30)
Kic Kic -

where K; and Ky are the mode I and mode II stress intensity factors, respectively. These stress intensity
factors are functions of the applied far-field stress state and the crack geometry. For a Griffith crack (a sharp
through-crack of length 2a), the stress intensity factors for a two-dimensional infinite plate are

Kl = gyTnta (231)
and
Kll - 1.‘/'1[7 (2.32)

Here o is the far-field normal stress, and T is the far-field shear stress. Substituting equations (2.31)
and (2.32) into equation (2.30) yields the following expression:

2 12
{ch} ma (233)

ta

At this point, index notation is briefly suspended in order to use notation that has been widely accepted in dis-
cussing Batdorf’s theory. By defining
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KZ 12
1C (2.34)
ocf =

ma

as a critical stress, then equation (2.33) (together with eq. (2.34)) defines a failure envelope which is dependent
on the material's fracture toughness and crack size. This failure envelope is shown in figure 2.3. Since the size

(denoted as "a" in the denominator of eq. (2.34)) and orientation of the critical crack will vary, G, represents a
random variable. Thus there is a family of failure envelopes corresponding to each value of the random variable
0, Batdorf used this concept to transform a deterministic fracture criterion into a reliability model.

The Batdorf theory stipulates that the probability of failure of a single link is the product of two probabili-
ties; that 1s,

Pt = PiP2 (2.33)

Here p, is the probability thata crack exists such that the applied stress is in the range of O, 10 (0, + da).
This probability is defined by the expression

dN (o) (2.36)

p, = AA do,.

do.,

where AA is the differential area of the link, and N(g,) is 2 crack density function (i.e., N has units of cracks
per unit area). The crack density function is defined as

N(oc,) = kgOo (237

and quantifies the number of cracks per unit area with an applied far-field stress that is greater than or equal to
o, Here kg is the Batdorf constant (which is functionally dependent on the Weibull scale parameter) and o
is the Weibull modulus of the material. Both parameters can be determined experimentally by using the para-
meter estimation techniques outlined in Pai and Gyekenyesi (1988).

The quantity p, is the probability that a crack is oriented such that the critical stress is exceeded by an
applied far-field stress. To illustrate this point, consider a state of plane stress using Mohr’s circle where
0<o0,<0(scc fig. 2.3). Define the angle ® asthe initial orientation of the crack where the critical stress is
exceeded. Note that the crack orientation varies between 0 and 27 radians, and there may be more than one
orientation where the critical stress is exceeded. Next, overlay the fracture envelope expressed in equation (2.33)
on the same set of axes. The angle between the & axis and the line OA defines 2w. Here point O is the
center of Mohr’s circle defined by the in-plane principal stresses Oy and 0;. Point A is the intersection of the
failure envelope given by equation (2.33) and Mohr’s circle and defines the initial orientation of a crack where
the critical stress is exceeded. Any point on Mohr's circle outside the failure envelope represents a possible
failure stress state. Thus the probability that a crack is oriented such that the critical stress is exceeded by the
applied far-field stress is :

12



P2 ® —5 (2.38)

where 0 < p;, < .

The geometry in figure 2.3 is used to established the form of equation (2.38). The applied far-field stress is
equal to O, at point A; thus

2
g.—0
w = cos M _< 2 (2.39)
7_ 2
G;~ 02
Hence,
, 12
.- 0
py = zcos -1} Yer 22 (2.40)
n -
g Oy
when 0, < 0, <0}, and
p2 =1 B N (2-41)
when G, < 0,. For the case where 0, < G} < O
p, = 0 2.42)

Following the argument outlined in equations (2.5) to (2.7), with the results of equations (2.36) and (2.40),
then the reliability of a component is given as

dN(o,) (2.43)
o erf |2w
R = exp|- H—=-2 do_dA
P -LL do_, |m@
Similarly, the probability of failure of a component becomes
dN(o,) |2 (2.44)
g, cr w
=] - - - do_dA
Pp=1-cexp LL o, |7 Ocr

Note that the limit of integration defined by A is the area of the component, and the limits of integration for
G, assume that ¢, is the largest principal stress. In the context of the preceding discussion concerning reli-

ability models, the failure function for Batdorf’s model is defined by the integral
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. J;o, dN(o) | 20 do (2.45)
do,, |®

The above analysis assumes that compressive stresses do not contribute to failure. For discussion on Batdorf’s
model for a volume analysis, see Batdorf and Crose (1974).

Power’s Extension of Batdorf's Theory

The Powers model (Powers, 1989) represents a hybrid approach to reliability analysis in the sense that
Batdorf's approach is adopted to predict reliability of a single link when both of its principal stresses are tensile.
and the Mohr-Coulomb failure theory is used when both are compressive. When one principal stress is tensile
and the other is compressive, a transition from the phenomenological criterion to the fracture criterion is neces-
sary. The details concerning the transition are rather complex and will not be reviewed here. Thus the remainder
of this section outlines the details of how Powers uses Mohr-Coulomb theory to predict reliability of monolithic
ceramic components. Mohr-Coulomb theory defines failure when the shear stress on an unspecified failure plane
reaches a critical value. Thus the shear stress at failure is a function of the coefficient of internal friction (), 2
compressive stress acting normal to the failure plane, and O, (which was defined previously). The failure
criterion takes the form -

Il + no = og (2.46)

Powers assumes that the envelope for the Mohr-Coulomb failure criterion coincides with the envelope from
Batdorf's fracture criterion at ¢ = 0, which results in T = O at this point. This represents a major drawback
and is discussed later. When viewed in Mohr’s stress space, the Mohr-Coulomb failure envelope is linear; hence
a slope and a point completely define the envelope. In her analysis, Powers specifies the slope as the material
parameter p. This quantity is defined as a single valued deterministic parameter. The associated point is the
quantity o from Batdorf's analysis. This quantity is the only random variable in the analysis.

Powers defines an additional quantity O, in her analysis. When viewing a state of stress in Mohr’s
stress space, this represents the point where the failure envelope becomes tangent to Mohr’s circle. In terms of
the principal stresses and the parameter U, Opax takes the form

Cy— 0O g+ O
O’ma_x"l+;,12 122""11 122 (2.47)

Again, index notation is briefly suspended in order to use the notation as it appears in Powers® original work.
This quantity is referred to as a "maximum” because it defines the limit of relevance from a reliability stand-
point; that is, no reduction in reliability occurs if the failure envelope lies above this point.

The significance of 0, is easily scen when deriving the failure function. Since planc stress conditions
simplify the analysis, again only the details of a surface flaw analysis are presented. In 2 manner similar to
Batdorfs approach, a critical stress and orientation of a failure plane must be defined in order to formulate the
failure function. However, it must be emphasized that the Mohr-Coulomb theory makes no allowance for infor-
mation concerning the physics of a crack (i.e,, it is not a fracture criterion). Powers €xpresses the failure
function as



® = akyOhy ['6Ss ¢ (2.48)

where S is a ratio of the critical stress (o) to the maximum stress (G ,,) for a given state of stress; i.e.,

Ccr
S = = (2.49)

max

The ratio S facilitates the numerical integration of equation (2.48). By varying this ratio from O to 1. g, is
varied from 0 to 0_,,. This guarantees that all relevant stress states are considered in the reliability prediction.
Also note that @ is similar in nature to the angle © defined in equation (2.39) (the details will be discussed
shortly), and the other terms in equation (2.48) have been defined in previous sections.

Several combinations of the failure envelope and Mohr’s circle must be studied. Figure 2.4 shows that the
failure envelope may not intersect Mohr’s circle, the envelope may be tangent to the circle, or the envelope may
intersect the circle at no more than two points. To determine the location of the intersection points and the por-
tion of the circumference of Mohr’s circle intersected, Powers formulates equation (2.46) in terms of the princi-
pal stresses, the ratio S_, and cos? ¢. Here ¢ locates the intersection points on the circle. The equation now
becomes quadratic in terms of cos? ¢, and thus ¢ has two values, ¢, and ¢,. The quantity ®, which appears
in equation (2.48), is functionally dependent on the two angles ¢; and ¢, in the following manner:

- 20, - ¢y) (2.50)
T

The angles ¢; and ¢, vary depending on the stress state. When there is no contact between the failure enve-
lope and Mohr’s circle (see fig. 2.4(2)), b =, =0 and ® = 0. When the failure envelope and Mohr’s circle
are tangent at a point (fig. 2.4(b)), b; = ¢, * 0, and once again ® = 0. When the failure envelope intercepts
Mohr’s circle twice (fig. 2.4(c)), @ represents the portion of Mohr's circle that lies outside of the failure enve-
lope. With this interpretation of @, and the definition of ¥ given by equation (2.48), Powers’ model yields the
following expression

R - cxp{-LakBo:m L‘G)sg"dsc,dA] 250

for component reliability when both principal stresses are negative.

The Mohr-Coulomb theory is a two-parameter failure theory that represents a straight line in the Mohr
circle stress space. The slope and a point of intersection on the T axis are used to define the linear envelope.
Broad assumptions are made that | is deterministic and o is a random variable. The effects of these
assumptions are evident when comparing compression reliability predictions to tensile reliability predictions.
Since p is not treated as a random variable, the predicted scatter in strength (quantified by the Weibull
modulus) is the same for simple compression and tensile tests using Powers' model. This result has never been
supported by experimental data for a given material. In fact, intuition says that the scatter should be greatly
reduced in compression. Thus the Weibull modulus for compression data should be substantially higher than the
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Weibull modulus for tensile data. Accommodating this type of behavior is not a problem with the reliability
model presented in chapter IV.

The following chapter presents the details of a three-parameter phenomenological failure model (the
Mohr-Coulomb failure model is a two-parameter model). The method of transforming this deterministic phe-
nomenological failure criterion into a reliability model is discussed in chapter IV. Basically, each of the three
model parameters are treated as random variables with separate Weibull distributions. This leads to much greater
flexibility in modeling reliability for multiaxial states of stress.

Figure 2.1.—Stress traction on an arbitrary plane.
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CHAPTER 1lI
WILLAM-WARNKE FAILURE CRITERION

A failure criterion defines a limit state. Within this limit state, a structural component will perform its
design application in some acceptable fashion. A primary function of the design engineer is to define what is
acceptable performance. Performance standards depend on the design variables used to define the limit state.
Design variables, which may include strength parameters, cyclic load limits, and allowable deformation, can be
assembled in an n-dimensional vector

Yo=Y Yo o, Yy (3.1)

and the limit state function, which stipulates how the design variables interact, is expressed in general as
AR, (32)

This function defines a surface in the n-dimensional design variable state. If a design point (i.e., an operational
state where each design variable has a specified value) lies within the surface, then the design point represents a
successful operational state. If the design point falls on the surface, the component fails. For deterministic
analyses, points outside of the failure surface are inaccessible, since failure results once the surface is reached.

In this report, the design variable space, defined by the vector &, is limited to strength parameters for
ceramic material systems. Since strength parameters are associated with components of the Cauchy stress tensor,
the general functional dependence of a limit state function is expressed as

8 = &(% o) 3

where o;; represents the Cauchy stress tensor. A three-parameter strength criterion developed by Willam and
Warnke (1975) will serve as the limit state function of primary interest here. The Willam-Warnke failure
criterion (developed for isotropic materials) is a unified failure criterion in the sense that one limit state function
defines failure for all regions of the stress space. As a comparison, Powers’ model adopted Batdorf's theory for
tensile regions of the stress space and Mohr-Coulomb theory for compressive regions of the stress space. The
Willam-Warnke criterion uses stress invariants to define the functional dependence on the Cauchy stress g;;,
specifically

g(@/w Ip Jz, J3) = ( (3.4)

This guarantees that the function is form invariant under all proper orthogonal transformations. Here I, is the
first invariant of the Cauchy stress ij» J, is the second invariant of the deviatoric stress S,-j, and J; is the
third invariant of the deviatoric stress. These quantities are defined as

1
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Il = Ot (36)

1
I = 5 Sy (3.7)
1

where -0y, is the identity tensor. Admitting I, to the function allows for a dependence on hydrostatic stress.
The invariant J; allows different behavior in tension and compression since this invariant changes sign when
the direction of a stress component is reversed.

Willam and Warnke defined the limit state function with the following expression

8(@o 1, 12 IARES —J‘/Y—ic—— + B[_il.}— 1 | : 69

where

B = B(Wa) (3.10)

and

A =M%y 1) e

The functions B and A will be defined momentarily. The strength parameters that comprise the design vector
@, include the uniaxial tensile strength of the material Y, the equal biaxial compressive strength Yy, and the
uniaxial compressive strength Y. This model is referred to as a three-parameter model, since three strength
parameters, ¥, = (Y,, Y., Y. are used to define the limit state function. Failure occurs when g =0 and the
multiaxial criterion is completely defined in all regions of the six-dimensional stress space.

Since the limit state function is dependent on the six components of the Cauchy stress tensor, a design
point and its relative position to the failure surface can be depicted in various stress spaces. Graphical
representations can take place in a two- or three-dimensional stress space, using the components of the Cauchy
stress tensor as coordinate axes. However, the function and the physical implications associated with the func-
tion can be viewed completely in the three-dimensional stress space where the principal stresses serve as ortho-
gonal coordinate axes (see fig. 3.1(a)). This space is known as the Haigh-Westergard stress space. In this
coordinate system, a given stress state, that is, a design point P(0,, 05, 03), can be readily decomposed into
hydrostatic and deviatoric components. This decomposition is shown in figure 3.1(b). Line d in figure 3.1(b)
represents the hydrostatic axis where ¢, = 0; = 03. Point P in this stress space represents an arbitrary state of
stress. The vector NP represents the deviatoric component of the arbitrary stress state, and the vector ON
represents the hydrostatic component.
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The plane passing through the origin normal to the hydrostatic line is called the m-plane. For an isotropic
material, a failure surface projected onto the m-plane must exhibit a sixfold symmetry. In the most general case
where the isotropic material possesses equal strengths in tension and compression, the failure surface in the
n-plane can be represented by two limiting cases (see fig. 3.2). The first case is represented by a circular failure
surface, and the second is represented by a polygon inscribed within the circular failure surface. Any failure sur-
face that does not fall within these two surfaces permits nonconvex regions to exist along the failure surface.
However, proof of convexity also implies that level surfaces of a function are closed surfaces. An open region
of the failure surface allows the existence of a load path along which failure will never occur. Thus for a con-
vex surface, load paths cannot be traversed towards open regions of the failure surface, since open regions will
not exist.

A failure surface projected onto the m-plane can be described conveniently with polar coordinates (r, ).
Here 6 is defined as an angle measured clockwise from the 0;-axis, and () is the distance from the hydro-
static axis to the failure surface (sec fig. 3.2). Note that r(6) is a function of © for the inscribed polygon, and
a constant for the circular failure surface. Physically, r(8) represents the deviatoric component of a stress state,
since this vector lies in the m-plane. In figure 3.2, the distance from the hydrostatic axis to the failure surface
along a compressive principal axis r, is equal to the distance along a tensile principal axis r, for both limiting
cases. However, ceramic material systems exhibit very different strengths in tension and compression. Failure
models must account for this behavior, and this can be done simply by constructing the function r(0) such that
the intercepts along the tensile and compressive principal axes are different. The Willam-Warnke criterion
accounts for this type of behavior by taking r. > r, (see fig. 3.3).

As mentioned previously, isotropic materials must exhibit a sixfold symmetry in the m-plane. Willam and
Warnke postulated that a single sector (0 < 6 < 7/3) of the failure surface in the m-plane could be represented
as a segment of an ellipse. The major and minor axes of the ellipse were formulated as functions of the inter-
cepts r, and r (see fig. 3.4). Note that the minor axis of the ellipse is assumed to coincide with a tensile axis.
However, the center of the ellipse does not necessarily coincide with the hydrostatic axis. The intercepts r, and
r. depend on the strength parameters Y, Y, and Yy . Equations are given later that detail the interrelation-
ships. In general the distance r(0) is defined as

, 12
2rc(rc2 —.rtz)cos 0+ r(_.(Zrt - rc)l:4(rcz - rtz)cos2 e+ 53 - 4rtrc:l (3.12)

re) =
4(rc2 - rtz)cos2 0 + (rc - 21})2

where 0 < 6 < 7/3. A detailed derivation of this expression can be found in Chen (1982). Note that equa-
tion (3.12) yields r(6) =r, for the special case of 8 =0. Similacly () =r, for 6 = w3.

With the definition of r(8) given in equation (3.12), A from equation (3.9) can be expressed as

x = ()12 1x(e)] (3.13)

Here A is implicitly dependent on J; through the angle 6. The dependence of 6 on Jj results from the
similarities between the trigonometric identity
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cos 6 - i cos 6 - 1 cos (30) =0 (3.14)
4 4
and the cubic equation used to find the deviatoric invariants
§s3-15,8-13=0 (3.15)

where the roots (S, S,, S,) are the eigenvalues of the deviatoric stress matrix. Substituting S =ycos @ into
equation (3.15) yields

I, cos O J
cos36-_2__7__- _%_=0 (3.16)
Y Y

By comparing this expression with equation (3.14), it becomes apparent that

N A | @17
V3
and B
V31
cos (3 ) = ‘/— 3 (3.18)

2(1f

The angle © was first defined by Lode (1926), and the relationship between this angle and the deviatoric invar-
iants was given by Nayak and Zienkiewicz (1972).

Details of the derivation for the Willam-Warnke criterion have been discussed in the context of the
n-plane. Since the criterion is represented by a conic surface in the three-dimensional Haigh-Westergard stress
space, and the function is sensitive to the hydrostatic component of the stress state, details obtained from the
two-dimensional 7-plane are not sufficient to completely describe the criterion. To gain a complete view of the
criterion, a cutting plane is passed through the conic surface such that the entire length of the hydrostatic axis is
contained in the cutting plane. This plane will intersect the surface along two lines. By definition, these lines are

termed meridians. :

Meridians define the profile of the conic failure surface in the Haigh-Westergard stress space. The relative
position of each meridian is defined by the angle 6. For the tensile meridian 6 = 0, and for the compressive
meridian © = /3. In the w-plane, a compressive meridian is represented by point Q in figure 3.3, and a tensile
meridian is represented by point T. For the Willam-Warnke criterion the meridians are linear, which is evident

“from the I, — /J, stress space in figure 3.5 and equation (3.9). Since the meridians are linear, two points on
a meridian will define its position. For the tensile meridian the two points used to determine its position are
defined by a uniaxial tensile load path, an equal biaxial compressive load "path, and their intersection with the
meridian. For both load paths equation (3.18) yields a value of © = 0. Considering a uniaxial tensile load case.
failure results when o, (0, = 0) reaches Y, (with 0, =03 = 0). The load path for this case is defined by the ratio
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I1
1 =173 (3.19)

i

The value of I, (=0)and (I, (= o/\/3_) at failure will fix the position of one point on the meridian. In a
similar fashion, the ratio

I
1 =346 (3.20)
Y2

defines the load path for equal biaxial compression where 0, = 0, (= 0)and 03 = 0. This load path fixes the

position of a second point on the meridian. Here I, =20 and «Jz = ¢ /(2/3) . Failure results when 0, = 0,

= Y} Both load paths are shown in figure 3.5. To clearly illustrate the load paths, the figure is not drawn to
scale. The meridian is then defined by the line connecting these two points on the failure surface.

Similarly two points are used to determine the position of the compressive meridian. The points are
defined by a uniaxial compressive load path and the intersection of the tensile meridian with the I;-axis. The
load path for the uniaxial compressive case is defined by the ratio

I
! =173 (321
Iz

where I;= o and \/}2— = ( 1/‘/3- ) o. This path is shown in figure 3.5, and equation (3.18) yields a value of

6 = n/3. Failure results when o, = Y, with g, = 03 = 0. The second point on the compression meridian is the
tip of the failure cone. Since the tensile meridian is completely defined by the parameters Y, and Yy, the
intersection of this line with the I, axis provides a second point for the location of the compressive meridian.
This point is shown in figure 3.5 as point V. The distance p from point V to the origin represents the hydro-
static tensile stress at failure. Physically, this stress state is not easily produced in an experiment. However, this

parameter is used to define B in equation (3.9). The parameter B is related to p by the simple expression

|
B=_ (3.22)
3 p

As noted previously, the Willam-Warnke criterion is a three-parameter model. The parameters D, T, and
r, may be used to define the criterion in lieu of the strength parameters Y, Yy, and Y. The relationships
are

Ybe It (323)
ybc - yl
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C (S e (3.24)
‘ 5 2¥pe ~ Vi

and
o= (8)7| et (325)
<5 3¥pe¥t ¥ Yoo T Nt
Here the expressions
Ype
= 3.26)
Yoo = (
YC
and
Y,
yt = _?__ (3.27)

are used to simplify equations (3.23) to (3.25). Once again, the derivations of these expressions were given by
Chen (1982).

To gain further insight regarding physical implications of the criterion, consider the failure envelope pro-
jected onto the g, - G, stress plane, which is depicted in figure 3.6. Again this is a cutting plane that passes
through the conic surface in the Haigh-Westergard stress space. Note that, in this figure, the function defines a
smooth failure surface for any combination of the principal stresses. Also, the differences between the tensile
strength and compressive strength of a material are readily apparent. The ratio of the intercepts along the tensile
and the compressive axes is equal to the ratio of Y, to Y. This stress space is encountered again in the next
chapter, where reliability concepts are described.

Finally, the Willam-Warnke failure criterion degenerates to simpler models under special conditions. For
the case of r, = r, = r,, where 1, is the same for any angle 6, the surface degenerates to a circle in the
n-plane and to a cone in the three-dimensional Haigh-Westergard stress space. This is the Drucker-Prager failure
criterion, which is a two-parameter formulation. For the special case where 1. = 1, = Iy and p = *°, the model
reduces to the single-parameter Von Mises criterion. For this case, the failure surface again becomes a circle in
the m-plane, but a right circular cylinder in the three-dimensional Haigh-Westergard stress space. Since this
criterion exhibits no dependence on hydrostatic stress, its meridians never intersect the Ij-axis in the I} - \/E_
stress space. :
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(2) Generalized failure surface in principal stress space.

)

P(c4, 02, 03)

(b) Stress at a point in principal stress space.
Figure 3.1.—Principal stress space.
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Figure 3.2.—Failure surface depleted in w-plane fora material
with equal tensile and compressive strengths.
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Figure 3.3.—Willam-Wamke failure surface depicted in
w-plane.
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Figure 3.4.—A 60° sector of Willam-Warnke failure surface depicted
in w-plane.
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Tensile meridian
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Compressive meridian
(6 = 60°)

Figure 3.5.—Tensile and compressive meridians viewed in l{_VJp
stress space. ’
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Figure 3.6.—Willam-Warnke failure surface depicted in o1-02
stress space.
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CHAPTER IV
INTERACTIVE RELIABILITY MODEL

In this chapter the details of transforming the Willam-Warnke failure function into an interactive proba-
bilistic model are presented. Rather than predicting a fail/no fail design condition, this stochastic approach pre-
dicts the probability of failure of a component. The design issues discussed here are similar to those outlined in
chapter II. The interactive reliability model accounts for a reduction in reliability due to compressive stresses,
and also accounts for decreased scatter in failure for compressive stress states in comparison to tensile stress
states. Note that the strength parameters used in the Willam-Warnke failure criterion are treated as random vari-
ables. Other quantities such as stiffness and Joads can be treated in a probabilistic fashion (see Cruse et al,,
1988), but since the strength of ceramic-based material systems commonly varies by 100 percent or more, only
the strength parameters are treated as random variables.

Reliability is calculated under the assumption that the three strength parameters (Y, Y;, and Y, ) are
independent random variables. It is assumed that each parameter is characterized by a two-parameter Weibull
distribution (eqs. (2.1) to (2.4)); however, other distributions can be used with this approach. Using separate
probability density functions for each random variable is versatile since other statistical distributions such as a
three-parameter Weibull distribution or a Jog-normal distribution can be used to characterize the random vari-
ables. The selection of the distribution is always dictated by the failure data. However, for the purpose of
simplicity and illustration, only the two-parameter Weibull distribution is considered here. To define the prob-
ability density distributions for each strength parameter, a Weibull modulus & and a scale parameter B must
be determined experimentally. In general, a significant number of failure tests (a quantity which is dependent on
the precision required for the parameter estimates of « and f3) are necessary to characterize the probability
density function for each random variable. See Pai and Gyekenyesi (1988) for methods of parameter estimation.

Here the functional dependence of the failure function g(%, oij) is given by equation (3.9). In general the
reliability of a unit volume is computed from the expression

A& = Probability [g(@a, oij) < 0] 4.1

where & represents the reliability. It is assumed that the element is homogeneous in stress; that is, no stress
gradients exist throughout the element. Initially, the reliability calculations are based on unit volumes. Later,
adjustments that account for arbitrary volumes are introduced. To calculate the reliability for an element of unit
volume, the joint density must be integrated over the design space defined by the failure function. This integra-
tion takes the form

Z = fgfﬂ(yc, Yoo )’bc)d)’c dyy d¥pe (4.2)
S .

where Q (Yo Yo Vi) is the joint density function of the random variables that correspond to the material
strength parameters, and 9 is the design space. By definition, the design space is that portion of the
stress space bounded by the failure surface. Under the assumption that the random variables appearing in
equation (4.2) are statistically independent, the reliability expression takes the form
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where p(¥c)s Po(Ye)s and pa(Yp) are the marginal probability density functions. These density functions are
characterized by the two-parameter Weibull distribution.

The integration defined by cquation (4.3) yields the reliability of a unit volume. This type of integration,
and the technique for defining the limits of integration were outlined in Sun and Yamada (1978), and
Wetherhold (1983). To illustrate the approach, one of the simpler models presented in these references (i.e., the
Tsai-Wu criterion) is used as an example since a closed-form solution can be obtained. Application of this type
of criterion has been proposed for the analysis of laminate composites, since each ply is analyzed by assuming
that the ply is an orthotropic plate subject to plane stress conditions. Here the failure function takes the form

2
fi-if}_+fi+f_6_}-1-o @
Y, le Y, Y¢

where o, and o0, are in the in-plane normal stresses, and oy isthe in-plane shear stress. The strengths Y,
Y,, and Yq are the random variables associated with the strength in the primary material direction (Y,), trans-
verse to the primary material direction (Y,), and an in-plane shear strength (Y¢). The reliability calculation
follows the format outlined in equations (4.1) to (4.3), specifically,

Y, Y. Y
R = J;‘" J;V( ¢ (“Ye¥2) iy ) plyy) P(Ye) dY1 4Y2 4¥6 (4.5)

Here p(y,), P(¥z), and p(ye) are the marginal probability density functions for the respective strength variables,
and the limits of integration are defined by systematically solving equation (4.4) for each random variable, and
then suppressing the random variable. Thus the first limit of integration is defined by the expression

, - 12
0y ~ 01% (4.6)

2 - oy} - [og¥e]

u(Yy, Y =

Next, terms containing the random variable Y, are suppressed in equation (4.4), and the remainder of the
equation is solved for Y, resulting in

2 12
%2 4.7)

v(Y6) = 2 - (06 /Y6)2

To solve for the limits of yg, terms containing both Y, and Y, are suppressed in equation (4.4), hence

w = 06 (48)
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Note that each term in this particular failure function (eq. 4.4) contains one strength variable. However, for the
Willam-Warnke model each term in the interactive formulation contains all three strength parameters. Deriving
the limits would réquire substitution of equations (3.12), (3.23), (3.24), and (3.25) into equation (3.9), and
solving for each of the strength parameters explicitly to obtain expressions similar to equations (4.6) to (4.8).
Developing closed-form expressions is intractable because of the definition of r(0). For this reason, the triple
integral was evaluated using Monte Carlo methods.

The Monte Carlo technique involves generating a uniform random sample of size K for each random vari-
able. A value is selected for each strength parameter via a random number generator. This random number is
used with the assumed marginal probability density function (i.e., two-parameter Weibull, three-parameter
Weibull, log normal, etc.) to obtain values for the random strength variables. Details of this computational pro-
cedure are outlined in Wetherhold (1983). For a given stress state, the failure function is evaluated for each
sample of random variables. Initially an clement of unit volume subject to a homogeneous stress state is con-
sidered. If g(%/,. o) < 0 for a given trial, then that trial is recorded as a success. By repeating this process a
suitable number of times for a given state of stress, the reliability (or cumulative distribution) of the element is
generated. In essence, the Monte Carlo method provides a means of simulating failure experiments on a com-
puter. This assumes that the marginal probability density functions have been suitably characterized; that is, the
values of the a's and the B's are known a priori. For a sufficiently large simulation sample size, reliability is’
computed by the simple expression

=1 : (4.9)

where n is the number of successful trials (i.e., the number of trials where g, o,-j) < 0).

Figure 4.1 shows a comparison of the Monte Carlo calculations with the underlying Weibull distribution
assumed for the tensile strength random variable. This is a plot of probability of failure versus failure strength.
For this case, the reliability of an element of unit volume is given by

| gl

where o is the applied tensile stress. For graphical purposes the natural logarithm of both sides of the
expression is taken twice. By introducing a constant C defined as

i (4.1
B

C

then the form of equation (4.10) is

(4.12)

InC+alno

]

Here the Weibull shape parameter for tensile strength defines the slope of the line depicted in figure 4.1. For
this illustration o = 5 and B = 0.2. The three points represent estimates using the Monte Carlo method for the
.uniaxial failure strength where the specified reliabilities are 5, 50, and 95 percent. A computer algorithm which
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numerically evaluates equation (4.5) using the Monte Carlo technique was used. For this example the desired re-
liability, the Weibull parameters defining the marginal probability density functions for the strength parameters,
and the desired nuiber of Monte Carlo simulations are specified. The simulated tensile load path is described in
chapter III. The stress state is increased incrementally along the specified load path until the desired reliabil-

ity is found to within some predetermined error bound. The data points in figure 4.1 were generated using 100
Monte Carlo trials. As a comparison, figures 4.2 to 4.4 show Monte Carlo estimates for different sample sizes.
Figure 4.2 depicts predictions for 500 Monte Carlo trials; figure 4.3, 1000 trials; and figure 4.4, 10 000 trals.
Note that as the number of trials increases, the points converge to the line representing the underlying

Weibull distribution for the parameter Y,. This indicates that the numerical approach for evaluating equation (4.5)
asymptotically converges to the underlying distribution as the sample size K increases.

To illustrate behavior along other load paths, simulations were conducted for the strength parameters Y.
and Y, Figure 4.5 shows the relations for the strength parameter Y, and figure 4.6 shows the relations for
the parameter Y. The Weibull parameters were arbitrarily stipulated. For the uniaxial compressive case,

o =35and B = 2.0, and for the biaxial compressive case, & = 35 and B = 2.32. Note that the a's were
assigned higher values for the compressive strength variables than for the tensile strength variable. Although
strength data for isotropic whisker-toughened ceramics are not available, there are sufficient experimental data
for monolithic ceramics to indicate that compressive failure modes generally do not exhibit as much scatter as
tensile failure modes. It is believed that similar behavior will be exhibited by isotropic whisker-toughened
materials. As in the uniaxial tensile case, estimates of reliability for 5, 50, and 95 percent were compared to the

linear form of the Weibull equation associated with each load path. Again, all points converged with the line for
10 000 trials.

This technique was also used in calculating the reliability contours shown in figure 4.7. This figure
represents the ¢;—C, stress space. The reliability contours represent a homogeneously stressed material ele-
ment of unit volume. Here the Weibull parameters associated with the tensile strength random variable are arbi-
trarily chosen to coincide with the example cited in the preceding paragraph, specifically o, =5 and B, =02.
Similarly, the Weibull parameters associated with the compressive strength random variable are arbitrarily
specified, with a, =35 and B, = 2. Finally the Weibull parameters associated with the equal biaxial com-
pressive strength random variable are oy = 35 and Py, = 2.32. The three surfaces depicted in figure 4.7
correspond to 2= 5, 50, and 95 percent. Note that the reliability contours retain the general behavior of the
deterministic failure surface. In general, as the a’s increase, the spacing between contours diminishes.
Eventually with increasing « the contours would not be distinct and they would effectively map out a deter-
ministic failure surface. An increase in the B's shifts the relative position of the contours in an outward
direction indicating an increase in strength. Also note that the o's for the tensile and compressive load paths
are different and can be specified independently of each other. This is a distinct advantage relative to the
Powers model discussed in chapter II. Since only a tensile Weibull modulus is specified in the Powers model,
the same scatter would occur for both tensile and compressive load paths.

The details for computing the reliability of a single element have been presented assuming a homogeneous
state of stress and a unit volume. To design a structural component with a varying stress field, the component 1s
discretized and the stress field is characterized using finite element methods. Since component failure may
initiate in any of the discrete elements (which typically do not have unit volumes or areas), it is useful to con-
sider a component from a systems viewpoint. A discretized component is a series system if it fails when one of
the discrete elements fails. This approach gives rise to weakest-link reliability theories. In a parallel system,
failure of a single element does not necessarily cause the component to fail, since the remaining elements may
sustain the load through redistribution. Parallel systems lead to what have been referred to in the literature as
bundle theories. Since it is assumed that qualitatively the failure behavior of whisker-toughened ceramics
mimics monolithic ceramics, a weakest-link reliability theory is adopted for designing structural components.
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If the failure of an individual element is considered a statistical event, and these events are assumed to be
independent, then the probability of failure of a discretized component is given as

N
Pp=1- I‘[ R, 4.13)

where N is the number of discrete finite elements for a given component, and R, is the reliability of the i
discrete element. This reliability is computed in the following manner. Recall that 2 (the reliability based on a
unit volume) is defined by equations (4.1) to (4.3), but calculated using the Monte Carlo techniques described
previously. These same techniques can be used to compute R, if the Weibull scale parameters are adjusted to
reflect the size of the element. In general each scale parameter (B B, and Bpo) 1S adjusted by using the

following transformation
\ Va
. o (4.14)
=" V} |

Here V; is the volume of the ith element and B is the adjusted scale parameter. No adjustment is necessary
for the Weibull moduli. The preceding discussion on the reliability model implied that failure of whisker-
toughened CMC originates from volume flaws. It is quite possible that component failure is caused by surface
and/or volume flaws; that is, competing failure modes may exist. These competing failure modes usually have
distinctly different Weibull parameters that characterize the marginal probability density functions. Accordingly,
equation (4.14) can be used for surface flaw analyses if V; is replaced by the area of the i element, A;.
However, for brevity, only volume flaw analysis is considered here.

This numerical procedure has been incorporated in a public domain test bed computer algorithm given the
acronym TCARES (Toughened Ceramics Analysis and Reliability Evaluation of Structures). Currently this
algorithm is coupled to the MSC/NASTRAN finite element code. For a complete description of the TCARES
algorithm, see Duffy, Manderscheid, and Palko (1989). Before using TCARES, the proposed interactive
reliability model that has been implemented into TCARES must be characterized using an extensive data base
that includes multiaxial experiments. It is not sufficient to simply characterize the Weibull parameters for each
random strength variable. Multiaxial experiments should be conducted to assess the accuracy of the interactive
modeling approach. However, once the Weibull parameters have been characterized for each random strength
variable, the algorithm allows a design engineer to predict the reliability of a structural component subject to
quasi-static multiaxial loads. Isothermal conditions are considered for the application that follows. However, the
algorithm is capable of nonisothermal analyses if the Weibull parameters are specified at a sufficient and appro-
priate number of temperature values. To illustrate certain aspects of the interactive model and the TCARES
algorithm, a reliability analysis is performed on a test specimen which is known as the Brazilian disk.

The Brazilian disk is used to circumvent the alignment difficulties encountered in tensile testing brittle
materials. In addition the Brazilian disk has been used to determine tensile strengths of brittle materials that
exhibit reduced tensile strengths relative to the compressive strength (€.g., concrete and rock). The analytical
details concerning the stress field of the Brazilian disk have been discussed by a number of authors including
Hondros (1959), Vardar and Finnie (1975), Chong, Smith, and Borgman (1982), and Fessler and Fricker (1984).
Most researchers assume that tensile failure usually occurs along the diameter directly beneath the applied load
(see fig. 4.8), splitting the disk. However, the region of the disk directly beneath the load experiences very large
compressive stress states that dissipate slowly. The interactive model presented here allows for a reduction in
reliability when compressive stress states are present. Thus the Brazilian disk can be used to compare the

33



interactive model with other widely used reliability models that do not account for compressive stress states. For
simplicity, the interactive mode! is compared with the Principle of Independent Action (PIA) reliability model.

It is assumed that the disk is fabricated from an isotropic whisker-toughened CMC material with a Young’s
modulus of 300 GPa and a Poisson ratio of 02. A compressive pressure load of 1000 MPa was applied to the
disk, and the subtended angle n for this example is 0.039 rad. The Weibull parameters associated with
each random strength variable were arbitrarily chosen. Specifically the Weibull parameters associated with the
tensile strength random variable are a; = 15and B, = 250. The Weibull parameters associated with the com-
pressive strength random variable are o, = 35 and B = 2500. Similarly the Weibull parameters associated with
the equal biaxial strength random variable are o, = 35 and By = 2900. Note that the B parameters have
units of MPa{(mm)>®. The disk has a radius of 50 cm and a thickness of 5.0 cm, and was modeled using 1/8
symmetry with 1044 finite elements (see fig. 4.9). The clements used in the structural analysis were 8-node
brick elements (MSC/NASTRAN HEX/8). The tensile stress in the x-direction near the center of the disk was
24.8 MPa. This stress remains fairly constant along the vertical diameter, except in the near vicinity of the load,
where this stress component changes sign and becomes compressive (see fig. 4.10). The elements near the loads
experience large compressive stresses (~997 MPa) in the y-direction that dissipate slowly down the diameter
(see fig. 4.11). The stresses in this direction are compressive throughout the disk.

When this particular discretized component was analyzed using the PIA model (with o = 15 and
B = 250) the component reliability was 99.9 percent. Note that compressive stress states (specifically compres-
sive principal stresses) do not affect component reliability when using the PIA model. This assumption is
similarly adopted for other reliability theories such as Batdorf's reliability model. This lack of accounting for
compressive stress states may be a nonconservative assumption depending on the values of the Weibull para-
meter that characterize the compressive strength random variables. Analyzing the disk using the interactive
reliability model presented here resulted in a component reliability of 77.7 percent. Again the Weibull para-
meters for the compressive strength random variables were arbitrarily specified. However, & values of 35 begin
to approach values for metals which have deterministic strength parameters, and an increase in the P values of
over an order of magnitude relative to f, represent conservative estimates of these Weibull parameters. Thus in
comparing the component reliability from the PIA model and the interactive reliability model, it is evident that
accounting for compressive stress states may play an important role in the analysis of structural components.
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Figure 4.9.—Finite element model for Brazilian
disk test specimen. '
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CHAPTER V
CONCLUDING REMARKS AND FUTURE DIRECTION

The basic features of conducting a reliability analysis by deriving an interactive reliability model have been
illustrated. The deterministic Willam-Warnke failure criterion serves as the theoretical foundation on which the
reliability model was constructed. Fundamental to the work presented here is the assumption that the strength
parameters associated with a deterministic failure criterion can be treated as random variables. As a result, the
proposed reliability model retains the phenomenological behavior that was present in the deterministic failure
criterion, such as sensitivity to hydrostatic stress and reduced tensile strength. The predictive capabilities
of the interactive model were examined assuming that the two-parameter Weibull distributions characterized the
marginal probability density functions for each random strength variable. This included both uniaxial and multi-
axial load paths. The interactive reliability model was implemented into TCARES, a test-bed software program.
Since this algorithm has been coupled with a general-purpose finite element program, design engineers are now
able to use the code as a postprocessor in order to predict the reliability of a structural component subject to
quasi-static multiaxial load conditions. A simple structural problem was presented to illustrate the reliability
model and the computer algorithm.

 In addition, this type of reliability model can be extended to account for material anisotropy. Using ortho-
tropic materials as an example, the parent deterministic failure function must reflect the stress state (as was done
in this report) and the appropriate material symmetry. For orthotropy this requires -that

g = gV, 0y 2, b)) (5.1)

where a, and b; are orthogonal unit vectors that represent the local orthotropic material directions. Because g
is a scalar function, it must remain form invariant under arbitrary proper orthogonal transformations. Work by
Reiner (1945), Rivlin and Smith (1969), Spencer (1971) and others demonstrated that by applying the Cayley-
Hamilton theorem and the elementary properties of tensors, a finite set of invariants (known as an integrity
basis) can be derived for scalar functions that are dependent on first- and second-order tensor quantities. See
Duffy (1987) for the details regarding the application of the Cayley-Hamilton theorem for this purpose. Form
invariance of the scalar functions is ensured if the functions depend on invariants that constitute either the
integrity basis, or any subset thereof. A number of authors (Lance and Robinson (1971), Boehler and Sawczuk
(1977), Arnold (1989), and Robinson and Duffy (1990)) have used this methodology to develop scalar valued
functions that are dependent on stress (a second-order tensor) and material directions (usually characterized by
first-order tensors as in eq. (5.1)). Clearly, the future direction alluded to here (i.e., incorporating material
symmetry using direction tensors) is not without precedent. However, for anisotropic whisker-toughened ceramic
composites the failure function must not only reflect the material anisotropy, but also account for reduced tensile
strength, and a dependence on the hydrostatic component of stress, if this behavior is exhibited experimentally.

Recall that the proposed model calculates reliability using the Monte Carlo method. For each stress state
10 000 trials are used to compute reliability. Since this approach is used in conjunction with finite clement
methods, it could easily challenge the computational capacity of even a supercomputer as the number of discrete
finite elements increases. In order to optimize computational efficiency, future work will also concentrate on
using numerical schemes referred to as Fast Probability Integration (FPI) techniques. Wu (1984) outlined several
fast probability integrators, including the methods of Rackwitz and Fiessler (1978) and Chen and Lind (1982).
These are first-order methods since it is assumed that the limit state is lincar at the design point. Quadratic
methods have been proposed, but the added complexity is not justified by dramatic increases in accuracy. In his
work, Wu proposed an improvement to the Rackwitz-Fiessler method. This method uses a least squares
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technique to fit an approximated cumulative distribution function for each random variable to the true
cumulative distribution. This approach increases accuracy with a minimal increase in computational efforts.
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Structural Reliability Analysis of
Laminated CMC Components

For laminated ceramic matrix composite (CMC) materials to realize their full po-
tential in aerospace applications design, methods and protocols are a necessity. This
paper focuses on the time-independent failure response of these materials and pre-

sents a reliability analysis associated with the initiation of matrix cracking. It high-
lights a public domain computer algorithm that has been coupled with the laminate
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analysis of a finite

Introduction

Structural components produced from laminated ceramic
matrix composite (CMC) materials are being considered for a
broad range of aerospace applications that include propulsion
subsystems in the national aerospace plane, the space shuttle
main engine, and advanced gas turbine engines. Specifically,
composite ceramics may be used as segmented engine liners,
small missile engine turbine rotors, and exhaust nozzles. These
materials will improve fuel efficiency by increasing engine tem-
peratures and pressures, which will, in turn, generate more
power and thrust. Furthermore, these materials have signifi-
cant potential for raising the thrust-to-weight ratio of gas tur-
bine engines by tailoring directions of high specific reliability.
The emerging composite systems, particularly those with a
silicon nitride or silicon carbide matrix, can compete with
metals in many demanding applications. The capabilities of
laminated CMC prototypes have already been demonstrated
at temperatures approaching 1400°C, well beyond the oper-
ational limits of most metallic materials.

Adding a second ceramic phase with an optimized interface
to a brittle matrix improves fracture toughness, decreases the
sensitivity of the brittle ceramic matrix to microscopic flaws,
and could also improve strength. The presence of fibers in the
vicinity of the crack tip modifies fracture behavior by increas-
ing the required crack driving force by several mechanisms.
These mechanisms include crack pinning, fiber bridging, fiber
debonding, and fiber pull-out. This increase in fracture tough-
ness allows for *‘graceful’’ rather than catastrophic failure. A
unidirectional ply loaded in the fiber direction retains sub-
stantial strength capacity beyond the initiation of matrix crack-
ing despite the fact that neither of the constituents would
exhibit such behavior if tested alone. First matrix cracking
consistently occurs at strains greater than in the monolithic
matrix material. As additional load is applied, the matrix tends
to break in a series of cracks bridged by the ceramic fibers,
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components made

presented. The estim
a failure population

element code and which serves as a design aid to analyze structural
from laminated CMC materials. Issues relevant to the effect of
the size of the component are discussed, and a parameter estimation procedure is
ation procedure allows three parameters to be calculated from
that has an underlying Weibull distribution.

until the ultimate strength of the composite is reached. The
region of a typical stress-strain curve between the first matrix
cracking and the ultimate tensile strength illustrates an intrinsic
damage tolerance not present in monolithic ceramics.

Laminated CMC material systems have several mechanical
characteristics that must be considered in the design of struc-
tural components. In regard to an individual ply, the most
deleterious of these characteristics are low strain tolerance, low
fracture toughness, and a large variation in failure strength in
the material orientation transverse to the fiber direction. Thus
analyses of components fabricated from ceramic materials re-
quire a departure from the usual deterministic philosophy of
designing metallic structural components (i.c., the factor-of-
safety approach). Although the so-called size effect has been
reported to be non-existent in the fiber direction (see DiCarlo,
1989), the bulk strength of unidirectional-reinforced ply will
decrease transverse to the fiber direction as the component
volume increases. Since failure in the transverse direction will
be dominated by the scatter in strength, statistical design ap-
proaches must be employed. These approaches must, on the
one hand, allow for elevated strength, reduced variability in
strength, and a diminished effect of bulk specimen size in the
fiber direction, and, on the other hand, increased scatter in
strength and effects of bulk size in the transverse direction.
Simply stated, a reliability analysis must rationally account for
material symmetry imposed by the reinforcement. Computa-
tional structural mechanics philosophies must emerge that ad-
dress the issues of scatter in strength, size effect, and material
anisotropy. There is a need for test-bed software programs
that incorporate stochastic design protocols, that are user
friendly, that are computationally efficient, and that have flex-
ible architectures that can readily incorporate changes in design
philosophy. The C/ CARES (Composite Ceramics Analysis and
Reliability Evaluation of Structures) program, which will be
highlighted in this article, was developed to fulfill this need.
C/CARES is a public domain computer algorithm, coupled
to a general purpose finite element program, which predicts
the fast fracture reliability of a laminated structural component
under multiaxial loading conditions.
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Stochastic Design Issues

For a number of composite material systems, several authors
(see for example Batdorf and Ghaffarian, 1984; Wu, 1989)
have reported a diminished size effect in the fiber direction;
and DiCarlo (1989) has reported this effect for ceramic com-
posites, in particular. This phenomenon is an important feature
that must be addressed by any reliability model. How it is
addressed depends on whether the material is modeled as a
series system, a parallel system, or a combination. Current
analytical practice uses finite element methods to determine
the state of stress throughout the component. It is assumed
that failure depends on the stress state in a component, such
that deformations are not controlling design. Since failure may
initiate in any of the discrete volumes (elements), it is useful
to consider a component from a systems viewpoint. A com-
ponent comprised of discrete volumes is a series system if it
fails when one of the discrete volumes fail. This approach gives
rise to weakest-link theories. In a parallel system, failure of a
single element does not necessarily cause the component to
fail, since the remaining elements may be able to sustain the
load through redistribution. The parallel system approach leads
to what has been referred to in the literature as “bundle”
theories.

The basic principles underlying these bundle theories were
originally discussed by Daniels (1945) and Coleman (1958).
Their work was extended to polymer matrix composites by

Rosen (1964) and Zweben (1968). Here, a relatively soft matrix_

serves to transfer stress between fibers and contributes little
to the composite tensile strength. Hence, when a fiber breaks,
the load is transferred only to neighboring fibers. Their analysis
is rather complex and limited to establishing bounds on the
stress at which the first fiber breaks and the stress at which
all the fibers are broken. Harlow and Phoenix (1978) proposed
a rather abstract approach that established a closed-form so-
lution for all the intermediate stress levelsina two-dimensional
problem, and Batdorf (1982) used an approximate solution to
establish the solutions for the three-dimensional problem. Bat-
dorf’s model includes the two-dimensional model as a special
case. In both of the latter two models, the authors proposed
that the effective Weibull modulus increases with increasing
component volume, Thisimplies a diminished size effect. How-
ever, these current bundle theories are predicated on the fact
that fibers are inherently much stronger and stiffer than the
matrix. In laminated CMC materials this is not always the
case. The strength and stiffness of both the fiber and matrix
are usually closer in magnitude. For this reason bundle theories
will not be considered in this paper.

We advocate the use of a weakest-link reliability theory for
designing components manufactured from laminated CMC
materials that do not exhibit strong size effects in specific
directions. Assuming that a laminated structure behaves in a
weakest-link manner allows a conservative estimate of struc-
tural reliability to be calculated. Thomas and Wetherhold (1990)
point out that this assumption is equivalent to predicting the
probability of the first matrix crack occurring in an individual
ply. For most applications the design failure stress for a lam-
inated material is assumed to coincide with this first ply matrix
cracking because matrix cracking usually allows the fibers to
oxidize at high temperatures, embrittling the composite.

Next, we address the righteousness of applying weakest-link
theory to a material that in some sense does not exhibit size
effects. In general, the mean strength of a sample population
representing uniaxial tension test specimens can be obtained
by integrating the probability of survival P, with respect to the
applied tensile stress; that is,

o= S Pdo )
0
Here 7 is the mean tensile strength, ¢ is the applied tensile
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stress, and P; is the probability of survival. The form of P,
depends on the probability density function that best represents
the failure data, which in turn depends on whether the struc-
tural component acts as a parallel or series system. Adopting
a three-parameter Weibull cumulative distribution function,
and assuming a weakest-link system (a conservative assump-
tion) gives the following form to Eq. (1):

5= S:exp[ - ("—;—7) ) V] do @

Here Vis the volume of the tensile test specimen, f is the scale
parameter, a is the Weibull shape parameter, and ¥ is the
threshold stress. This integral has the following closed-form
solution (see DeSalvo, 1970):

- 1
a=-y+|:7;7)37;]1‘(1+;) 3)

which depends on volume, the Weibull parameters, and the
gamma function I'. When an argument originally outlined by
Jayatilaka (1979) is followed, two uniaxial tensile specimen
populations with distinctly different specimen volumes will
yield different mean strengths. Associating @, with V] gives

- 1
g =v+ [-(7%,7;:‘1"(1 +;> 4

Similarly associating g, with ¥, gives

- 1
az=7+[-(7f—)-,7;]l"<l+;> (5)

If the effective mean is defined as
©@)err=0—7 (6)

then the ratio of the effective mean strengths depends only on
the specimen volume and the Weibull modulus; that is,

@t 1=y _(V2 Ve
—_—— | — 7
@t T2 (V.) 0

As the Weibull modulus of a particular material increases, the
ratio of the effective mean strengths approaches unity. In this
situation the material exhibits no size effect (even though the
distribution of failure strength may be represented by a Weibull
probability density function). From a practical standpoint,
doubling the specimen size of a material whose Weibull mod-
ulus is =15 would yield less than a 5 percent difference in the
effective mean failure strengths of the two populations. We
expect an elevated Weibull modulus to be associated with the
strength of CMC materials in the fiber direction. Reports of
an apparent lack of size effect associated with the strength in
the fiber direction (see DiCarlo, 1989) could easily be an artifact
of an increasing shape parameter (or small sample size). How-
ever, at this time there is an insufficient quantity of CMC
failure data from which to estimate the Weibull parameters.
In general, the weakest-link theory allows for diminishing size
effects as the Weibull modulus increases.

Reliability Model

The ongoing metamorphosis of ceramic material systems
and the lack of standardized design data have in the past tended
to minimize the emphasis on modeling. Many structural com-
ponents fabricated from ceramic materials were designed.by
s‘trial and error,”’ since emphasis was placed on demonstrating
feasibility rather than on fully understanding the processes
controlling behavior. (This is understandable during periods
of rapid improvements in material properties for any syst}:m.)
In predicting failure behavior, thereis a philosophical division
that separates analytical schools of thought into microstruc-
tural methods (usually based on principles of fracture me-
chanics) and phcnomenological methods. Blass and Ruggles
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(1990) point out that analysts from the first school would design
the material assuming that the constituents are distinct struc-
tural components and would consider the composite ply (or
lamina) a structure in its own right. Analysts from the latter
school of thought would design with the material (i.e., they
would analyze structural components fabricated from the ma-
terial). Rigorous fracture mechanics criteria have been pro-
posed (¢.g., Budiansky et al., 1986; Marshall et al., 1985) that
adopt the microstructural viewpoint, but since they are all
deterministic criteria, they will not be considered here. Fracture
mechanics has been combined with a probabilistic Weibull
analysis of failure location to determine the stress-strain be-
havior and subsequent work of fracture for unidirectional com-
posites (¢.g., Thouless and Evans, 1988; Sutcu, 1989). However,
the focus here is first matrix cracking, and we note that mature
reliability-based design methods using fracture mechanics con-
cepts will not surface until a coherent mixed-mode fracture
criterion has been proposed.

The aforementioned second school of thought represents the
ply (or lamina) as a homogenized material with strength prop-
erties that are determined from a number of well-planned phe-
nomenological experiments. The authors currently embrace
this philosophy, and there are practical reasons for initially
adopting this viewpoint. We fully recognize that the failure
characteristics of these composites are controlled by a number
of local phenomena, including matrix cracking, debonding and
slipping between matrix and fibers, and fiber breakage, all of
which interact strongly. Understanding the underlying ana-
lytical concepts associated with the microstructural viewpoint
allows one to gain insight and intuition prior to constructing
multiaxial failure theories that in some respect reflect the local
behavior. Tensile failure in the fiber direction is dependent on
these local mechanisms, and the future intent is to extend
reliability methods to the constituent level in a rational and
practical manner. However, a top-down approach, that is first
proposing design models at the ply level, will establish viable
and working design protocols. Initiaily adopting the bottom-
up approach allows for the possibility of becoming mired in
detail (experimental and analytical) when multiaxial reliability
analyses are conducted at the constituent level.

There is a great deal of intrinsic variability in the strength
of each brittle constituent of a ceramic matrix composite, but
depending on the composite system, the transverse matrix
cracking strength may either be deterministic or probabilistic.
Statistical models are a necessity for those composite systems
that exhibit any scatter in the initiation of first matrix cracking.
We treat it in a probabilistic fashion, requiring that determin-
istic strength be a limiting case that is readily obtainable from
the proposed reliability model. Predicting the reduction in
reliability due to loads in the fiber direction addresses an upper
bound for ply reliability in a structural design problem. Con-
versely, a tensile load applied transverse to the fiber direction
results in failure behavior similar to a monolithic ceramic,
which corresponds to the lower bound of ply reliability. Thus
multiaxial design methods must be capable of predicting these
two bounds as well as account for the reduction in reliability
due to an in-plane shear stress, and compressive stresses in the
fiber direction and transverse to the fiber direction.

A number of macroscopic theories exist that treat unidirec-
tional composites as homogenized, anisotropic materials. These
methods use phenomenological strength data directly without
hypothesizing specific crack shapes or distributions. Theories
of this genre generally are termed noninteractive if individual
stress components are compared to their strengths separately.
In essence, failure mechanisms are assumed not to interact,
and this results in component reliability computations that are
quite tractable. Work by Thomas and Wetherhold (1990),
Duffy and Arnold (1990), Duffy and Manderscheid (1990),
and Duffy et al. (1990) is representative of multiaxial nonin-
teractive reliability models for anisotropic materials. In ad-
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dition Wu (1989), and Hu and Goetschel (1989) have proposed
simpler unidirectional reliability models for laminated com-
posites that can be classified as noninteractive. Alternatively,
one can assume that for multiaxial states of stress, failure
mechanisms interact and depend on specific stochastic com-
binations of material strengths. Usually a failure criterion is
adapted from existing polymer matrix design technologies. The
probability that the criterion has been violated for a given
stress state is computed using Monte Carlo methods (de Roo
and Paluch, 1985) or first-order-second-moment (FOSM)
methods (Yang, 1989; Miki et al., 1989). The interactive ap-
proach often results in computationally intensive reliability
predictions.

In this paper a noninteractive phenomenological approach
has been chosen such that a unidirectional ply is considered a
two-dimensional structure, assumed to have five basic strengths
(or failure modes). They include a tensile and compressive
strength in the fiber direction, a tensile and compressive strength
in the direction transverse to the fiber direction, and an in-
plane shear strength. In addition each ply is discretized into
individual sub-ply volumes. For reasons discussed in the pre-
vious section we assume that failure of a ply is governed by
its weakest link (or sub-ply volume). Under this assumption,
events leading to failure of a given link do not affect other
links (see, for example, Batdorf and Heinisch, 1978; Weth-
erhold, 1983; Cassenti, 1984); thus the reliability of the ith ply
is given by the following expression:

Ri=exp (- gv wv) ®

where V is the component volume. Here, ;(x;) is the failure
function per unit volume at position Xx; within the ply, given

by
| o =) “ ITa—v2l |72 | Co2=73) “
*"‘[ B ]*[ 2 ]*[ B ]

L[eenesy ™, ((-l)(az+‘vs))]°’ )
B4 Bs

The o's associated with each term in Eq. (9) correspond to the
Weibull shape parameters, the 8’s correspond to Weibull scale
parameters, and the y’s correspond to the Weibull threshold
stresses. In addition, o, and o, represent the in-plane normal
stresses that are aligned with and transverse to the fiber di-
rection, respectively. Also, 7y, is the in-plane shear stress. The
normal stresses appear twice, and this allows for different
failure modes to emerge in tension and compression. Note that
the brackets indicate a unit step function; i.e.,

() = xoulx] = {x x>0

1
0 x<0 (10)
Inserting Eq. (9) into the volume integration given by Eq. (8)
yields the reliability of the ith ply, and the probability of first
ply failure for the laminate is given by the expression

n
Poy=1-1] &
i=1

where n is the number of plies.

This reliability model can be readily integrated with laminate
analysis options available in several commercial finite element
codes. A preliminary version of a public domain computer
algorithm (C/CARES) that is coupled with MSC/NASTRAN
has been developed at NASA Lewis Research Center to per-
form this analysis. A simple benchmark application illustrates
the approach. A thin-wall tube is subjected to an internal
pressure and an axial compressive load. The component is
fabricated from a three-ply laminate, with a 90°/6/90* layup.
Here angle 8 is measured relative to the longitudinal axis of

(an
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Fig. 1 Finite element mesh of thin-wall tube with three-ply (90°/6/90°)
layup; Internal pressure, 4.25 MPa; axial compressive siress, 87.5 MPa

Table 1 Composite Weibull parameters for thin-wall tube [Weibull
threshold siress, v, = 0]

index? Type and direction of stress Weibull parameters
Shape. | Scale,
aj 8i
1 Normal tensile stress in [iber direction F1 450
2 In-plane shear stress 22 420
k] Norsal tensile stress transverse to 10 350
fiber direction
4 Normal coepressive stress in fiber 35 4500
direction
5 Mormal coopressive stress transverse to 30 3500
{iber direction

3[ndices correspond to subscripts in Eg. (9).

the tube (see Fig. 1). An arbitrary internal pressure of 4.25
MPa and an axial compressive stress of 87.5 MPa were applied
to the tube. The Weibull parameters were also arbitrarily cho-
sen (see Table 1). Note that the threshold stresses are taken as
zero for simplicity. In design, setting the threshold stresses
equal to zero would represent a conservative assumption. The
overall component reliability is depicted as a function of the
midply orientation angle (6) in Fig. 2. The ply orientation has
a decided effect on component reliability, as expected. Similar
studies could demonstrate the effects of component geometry,
ply thickness, load, and/or Weibull parameters on component
reliability. Hence, the C/CARES code allows the design en-
gineer a wide latitude to optimize a component relative to a
number of design parameters.

Parameter Estimation

We anticipate that laminated CMC materials will exhibit
threshold behavior, at least in the fiber direction. Hence, a
three-parameter Weibull distribution is used in the stochastic
failure analysis of the components. The threshold stress pa-
rameter is included to allow for zero probability of failure
when the load is below a predetermined level. The three-pa-
rameter distribution has been somewhat ignored due to dif-
ficulties encountered in extracting the parameters from
experimental data. Several authors (including Weibull, 1939;
Weil and Daniel, 1964; Schneider and Palazotto, 1979) have
proposed estimation methods for the three-parameter distri-
bution. For various reasons, these techniques have not been
widely accepted. However, Cooper (1988) recently proposed
a nonlinear regression method to estimate parameters. Regres-
sion analysis postulates a relationship between two variables.
In an experiment, typically one variable can be controlled (the
independent variable) while the response variable (or de-
pendent variable) is uncontrolied. In simple failure experiments
the material dictates the strength at failure, indicating that the
failure stress is the response variable. The ranked probability
of failure &, can be controlled by the experimentalist since it
is functionally dependent on the sample size V. If the observed
failure stresses (d,, 92, 03, ..., on) are placed in ascending order,
then
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Fig. 2 Component rellability versus midply orientation angle for thin
wall tube
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Clearly one can influence the ranked probability for a given
stress level by increasing or decreasing the sample size. Coop-
er’s procedure adopts this philosophy, and the specimen failure
stress is treated as the dependent variable. The associated ranked
probability of failure then becomes the independent variable.
The basic three-parameter Weibull expression for probability
of failure can be expressed as s

o 1 W&
o=+ (5 |

where &; is an estimate of the dependent variable, and ¥, B,
and & are estimates of the threshold parameter, the charac-
teristic strength, and the shape parameter, respectively. De-
fining

CLo)= (12

a13)

(14)
as the ith residual, where as before o; is the ith failure stress,
then

5,'=¢-7¢—0'1

N N
S 6=, G+ -a)’ (15)
=1 fw]
where we adopt Cooper’s notation and take
1
Wi=In{ —— 16
i=In (l - (P;) (16)

Setting the partial derivatives of the sum of the squares of the
residuals with respect to ¥, B, and & equal to zero yields the
following three expressions:

o] (503 =]

i=l im1 i=1
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Transactions of the ASME




Table 2 Monalithic alumina {ailure data*

Speci- | Stress, Speci- | Stress, Speci- | Stress, Speci- | Stress,
men MPa men MPa men MPa men MPa
number number number number
-1 307 10 337 19 357 28 385
2 308 11 343 20 364 29 388
3 322 12 345 21 371 30 395
4 328 13 347 22 373 31 402
S 328 14 350 23 374 32 411
6 329 15 352 24 375 33 413
7 331 18 353 25 376 34 415
8 332 17 355 26 376 35 456
9 335 18 356 27 381

aFor specimen shown in Fig. 3.
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Fig. 3 Monolithic alumina specimen geometry

} 40 mm

Number Weibull parameters
of Shape, Scale, Threshold stress,
parameters a B 1
_— 3 1.15 803.41 298.48
—_— 2 13.2 376.0

o Data (35 points)
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Filg. 4 Two-parameter and three-parameter distributions determined
from the alumina failure
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in terms of the parameter estimates. The solution of this system
of equations is iterative. One assumes an initial value for & (a
small value, usually equal to 1), computes B from Eq. (17) and
¥ from Eq. (18). These values of the parameter estimates are
then inserted into Eq. (19), and this expression is checked to
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see if it satisfies some predetermined tolerance. If Eq. (19) is
not satisfied, & is increased and a new iteration is conducted.
This procedure continues until a set of parameter estimates
are determined that satisfy Eqs. (17)-(19).

Currently we do not have enough CMC failure data to es-
timate Weibull parameters for a given material orientation.
So to illustrate the technique, parameter estimates were de-
termined for two-parameter and three-parameter distributions
from a failure population representing a monolithic ceramic
(alumina) reported by Quinn (1989). The failure data and spec-
imen geometry are shown in Table 2 and Fig. 3. Figure 4 isa
plot of probability of failure versus failure stress for the data.
The straight line represents the two-parameter fit to the data,
using Quinn’s (1989) values for the shape and scale parameters.
The nonlinear curve represents the three-parameter fit to the
data. Note that the three-parameter distribution is more ef-
ficient in predicting the failure data in the high reliability re-
gion.

Summary and Future Directions

In this paper we discuss stochastic issues related to size effects
in the fiber direction of a unidirectional CMC material. In
addition, we present a reliability model along with a simple
application that highlighted the C/CARES computer algo-
rithm. (This public domain algorithm is capable of predicting
component reliability from the state of stress and temperature
distribution within the component.) The authors anticipate that
CMC materials will exhibit threshold behavior; hence a non-
linear regression analysis was outlined to determine three pa-
rameters for a Weibull distribution from failure data.

Ceramic material systems will play a significant role in future
elevated-temperature applications. To this end, there are a
number of issues that must be addressed by the structural
mechanics research community. We begin by pointing out that
total failure of an individual ply effectively reduces the overall
laminate stiffness. This causes local redistribution of the load
to adjacent layers. In addition, delamination between plies
relaxes the constraining effects among layers, allowing in-plane
strains to vary in a stepwise fashion within a laminate. These
effects require the development of rational load redistribution
schemes. It is also apparent that before ceramics are used as
structural components in harsh service environments, thought-
ful consideration should be given to reliability degradation due
to time-dependent phenomena. Thus, issues germane to com-
ponent life, such as cyclic fatigue and creep behavior, must be
addressed analytically. Computational strategies are needed to
extend current methods of analysis from subcritical crack
growth and creep rupture to laminated CMC materials that
are subject to multiaxial states of stress.

An important aspect that has not been addressed in detail
is the effect of a rising R-curve behavior, where fracture tough-
ness is a function of crack size. Clearly fiber-toughened ma-
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trices have process zones around the crack tip. Within this
zone, energy dissipates locally, which develops a damage tol-
erance by increasing the resistance to crack growth with crack
extension. Failure of materials exhibiting R-curve behavior
would depend on the rate at which resistance increases with
crack growth. During crack extension this behavior would
modify the strength distribution. Modeling efforts by Kendall
et al. (1986) and others have accounted for this behavior in
monolithic ceramics, and it is reasonable to extend their work
to ceramic composite material systems. Furthermore, if ce-
ramic materials mimic ductile failure locally, cyclic fatigue may
become a design issue. Under cyclic loads, the process zone
advances as the crack tip extends; therefore, brittle fracture
mechanics may need to be modified to account for pseudo-
ductile fracture. Hence, application of modified metallic fa-
tigue analyses may be a distinct possibility.

In addition, recent progress in processing ceramic material
systems has not been matched by mechanical testing efforts.
There is a definite need for experiments that support the de-
velopment of reliability models. Initially this effort should
include experiments that test the fundamental concepts (e.g.,
quantifying the size effect in the fiber direction) within the
framework of current stochastic models. For example, probing
experiments could be conducted along various biaxial load
paths to establish level surfaces of reliability in a particular
two-dimensional stress space {similar to probing yield surfaces
in metals). One could then verify such concepts as the maxi-
mum stress response, which is often assumed in the noninter-
active reliability models proposed for these materials. After
establishing a theoretica! framework, characterization tests
should then be conducted to provide the functional dependence
of model parameters with respect to temperature and envi-
ronment. Finally data from structural tests that are multiaxial
(and possibly nonisothermal) would be used to challenge the
predictive capabilities of models through comparison to bench-
mark response data. These tests involve nonhomogeneous fields
of stress, deformation, and temperature, and would include
two-bar tests as well as plate and shell structures. Results from
structural testing provide feedback for subsequent modifica-
tion, but ad hoc models result in the absence of structured
interaction between the experimentalist and the theoretician.
The validity of these models is then forever open to question.
Furthermore, we cannot overemphasize that this kind of testing
supports methods for designing components, not the materials.
Currently this effort is hampered by the quality and scarcity
of data (note the lack of failure data necessary to estimate
composite Weibull parameters). Finally, ceramic properties
pertinent to structural design (which include stochastic param-
eters) vary with test methods. The mechanics research com-
munity is beginning to realize this, and a consensus is beginning
to form regarding standards. However, we wish to underscore
the fundamental need for experimental programs that are rel-
evant to structural mechanics issues.

In closing, we recognize that when failure is less sensitive to
imperfections in the material, stochastic methods may not be
as essential. Yet, trends in design protocols are moving in the
direction of probabilistic analyses (even for metals) and away
from the simplistic safety-factor approach. In this sense, brittle
ceramics will serve as prototypical materials in the study and
development of reliability models that will act as the basis of
future design codes.

References

Batdorf, S. B., and Heinisch, H. L., Ir., 1978, **Weakest Link Theory Re-
formulation for Arbitrary Fracture Criterion,’’ Journal of the American Ceramic
Society, Vol. 61, pp. 355-358.

Batdorf, S. B., 1982, *‘Tensile Strength of Unidirectionally Reinforced Com-
posites—I,"* Journal of Reinforced Plastics and Composites, Vol. 1, No. 2, pp.
153-164.

108 / Vol. 115, JANUARY 1993

Batdorf, S. B., and Ghaffarian, R., 1984, *Size Effect and Strength Variability
of Unidirectional Composites,” International Journal of Fracture, Vol. 26, [
113-123. :

Blass, J. J., and Ruggles, M. B., 1990, *‘Design Methodology Needs for Fiber.
Reinforced Ceramic Heat Exchangers,” ORNL/TM-11012, Oak Ridge National
Lab., TN.

Budiansky, B., Hutchinson, J. W., and Evans, A. G., 1986, “*Matrix Fracture
in Fiber-Reinforced Ceramics, " Journal of the Mechanics and Physics of Solids,
Vol. 34, No. 2, pp. 167-189.

Cassenti, B. N., 1984, *‘Probabilistic Static Failure of Composite Material,”
AIAA Journal, Vol. 22, No. 1, pp. 103-110.

Coleman, B. D., 1958, *‘On the Strength of Classical Fibers and Fiber Bundles,"
Journal of the Mechanics and Physics of Solids, Vol. 7, No. 1, pp. 66-70.

Cooper, N. R., 1988, “‘Probabilistic Failure Prediction of Rocket Motor
Components,” PhD Thesis, Royal Military College of Science (Avail. Univ.
Microfilms Inc.).

Daniels, H. E., 1945, “The Statistical Theory of the Strength of Bundles of
Threads,” Proceedings of the Royal Society of London, Series A, Vol. 183,
No. 995, pp. 405-435.

de Roo, P., and Paluch, B., 1985, “‘Application of a Multiaxial Probabilistic
Failure Criterion to a Unidirectional Composite,”* Developments in the Science
and Technology of Composite Materials, A. R. Bunsell, P. Lamicq, and A.
Massiah, eds., Association Européenne des Matériaux Composites, Bordeaux,
pp. 328-334,

DeSalvo, G. J., 1970, **Theory and Structural Design Applications of Weibull
Statistics,”” WANL-TME-2688, Westinghouse Astronuclear Laboratory.

DiCarlo, J. A., 1989, “CMC’s for the Long Run,” Advanced Materials and
Processes, Yol. 135, No. 6, pp. 41-44.

Duffy, S. F., and Arnold, S. M., 1990, *‘Noninteractive Macroscopic Reli-
ability Model for Whisker Reinforced Ceramic Composites,’’ Journal of Com-
posite Materials, Vol. 24, No. 3, pp. 293-308.

Duffy, S. F., and Mandersheid, J. M., 1990, “‘Noninteractive Macroscopic
Reliability Model for Ceramic Matrix Composites With Orthotropic Material
Symmetry,”” ASME JoURNAL OF ENGINEERING FOR GAS TURBINES AND POWER,
Vol. 112, No. 4, pp. 507-511.

Duffy, S. F., Wetherhold, R. C., and Jain, L. K., 1990, ‘“Extension of a
Noninteractive Reliability Model for Ceramic Matrix Composites,”” NASA CR-
185267.

Harlow, D. G., and Phoenix, S. L., 1978, ““The Chain-of-Bundles Probability
Model for the Strength of Fibrous Materials—1. Analysis and Conjectures,”
Journal of Composite Materials, Vol. 12, No. 2, pp. 195-214.

Hu, T. G., and Goetschel, D. B., 1989, **The Application of the Weibull
Strength Theory to Advanced Composite Materials,”” Tomorrow’s Materials:
Today, Vol. 1, Proceedings of the 34th International SAMPE Symposium and
Exhibition, G. A. Zakrzewski et al., eds., SAMPE, Covina, CA, pp. 585-599.

Jayatilaka, A. S., 1979, Fracture of Engineering Brittle Materials, Applied
Science Publishers, London, United Kingdom, pp. 249-257.

Kendall, X., Alford, N. M., Tan, S. R., and Birchall, J. D., 1986, *“Influence
of Toughness on Weibull Modulus of Ceramic Bending Strength,"” Journal of
Materials Research, Vol. 1, No. 1, pp. 120-123.

Marshall, D. B., Cox, B. N., and Evans, A. G., 1985, *“The Mechanics of
Matrix Cracking in Brittle Matrix Fiber Composites,’’ Acta Metallurgica, Vol.
33, No. 11, pp. 2013-2021.

Miki, M., Murotsu, Y., Tanaka, T., and Shao, S., 1989, ‘‘Reliability of the
Strength of Unidirectional Fibrous Composites,'” 30th Structures, Structural
Dynamics and Materials Conference, Part 2, AIAA, Washington, DC, pp. 1032-
1040.

Quinn, G. D., 1989, *‘Flexure Strength of Advanced Ceramics—A Round
Robin Exercise,”” MTL TR-89-62 (Avail. NTIS, AD-A212101).

Rosen, B. W., 1964, *‘Tensile Failure of Fibrous Composites,”” AJAA Journal,
Vol. 2, No. 11, pp. 1985-1991.

Schneider, D., and Palazotto, A. N., 1979, **A Technique for Evaluating a
Unique Set of Three Weibull Parameters Considering Composite Materials,”
Fibre Science and Technology, Vol. 12, No. 4, pp. 269-281.

Sutcu, M., 1989, “Weibull Statistics Applied to Fiber Failure in Ceramic
Composites and Work of Fracture,” Acta Metallurgica, Vol. 37, No. 2, pp.
651-661.

Thomas, D. J., and Wetherhold, R. C., 1990, ‘‘Reliability Analysis of Con-
tinuous Fiber Composite Laminates,”” NASA CR-185265.

Thouless, M. D., and Evans, A. G., 1988, ‘‘Effects of Pull-Out on the Me-
chanical Properties of Ceramic-Matrix Composites,'’ Acta Metallurgica, Vol.
36, No. 3, pp. 517-522.

Weibull, W. A., 1939, “‘Statistical Theory of the Strength of Materials,”
Ingeniors Vetenskaps Akadamien Handlingar, No. 151.

Weil, N. A., and Daniel, [. M., 1964, ““Analysis of Fracture Probabilities in
Nonuniformly Stressed Brittle Materials,” Journal of the American Ceramic
Society, Vol. 47, No. 6, pp. 268-274.

Wetherhold, R. C., 1983, **Statistics of Fracture of Composite Material Under
Multiaxial Loading,” PhD Dissertation, University of Delaware.

wu, H. F., 1989, *‘Statistical Analysis of Tensile Strength of ARALL Lam-
inates,” Journal of Composite Materials, Vol. 23, No. 10, pp. 1065-1080.

Yang, L., 1989, ‘‘Reliability of Composite Laminates,"” Mechanics of Struc-
tures and Machines, Vol. 16, No. 4, pp. 523-536.

Zweben, C., 1968, “*Tensile Failure of Fiber Composites,”” AIAA Journal,
Vol. 6, No. 12, pp. 2325-2331.

Transactions of the ASME

LSRR

PR SR LR



S. F. Duffy

NASA Resident Research Associate.

Reliability Analysis of Structural

Ceramic Components Using a

L. M. Powers
NASA Resident Research Associate.

Cleveland State University,
Cieveland, OH 44115

A. Starlinger

National Research Council
NASA Research Associate,
NASA Lewis Research Center,
Cleveland, OH 44135

Three-Parameter Weibull
Distribution

This paper describes nonlinear regression estimators for the three-parameter Weibull
distribution. Issues relating to the bias and in variance associated with these estimators
are examined numerically using Monte Carlo simulation methods. The estimators
were used to extract parameters from sintered silicon nitride failure data. A reliability
analysis was performed on a turbopump blade utilizing the three-parameter Weibull

distribution and the estimates from the sintered silicon nitride data.

Introduction

To date, most reliability analyses performed on structural
components fabricated from ceramic materials have utilized
the two-parameter form of the Weibull distribution. The use
of a two-parameter Weibull distribution to characterize the
random nature of material strength implies a nonzero prob-
ability of failure for the full range of applied stress. This
represents a conservative design assumption when analyzing
structural components. A three-parameter form of the Weibull
distribution is available. The additional parameter is a thresh-
old stress that allows for zero probability of failure when
applied stress is at or below the threshold value. By employing
the concept of a threshold stress, design engineers can effec-
tively tailor the design of a component to optimize structural
reliability.

Difficulties in estimating parameters as well as a lack of
s}rength data with corresponding fractographic analysis has
limited the use of this distribution. Several authors (including
Weibull, 1939; Weil and Daniel, 1964; Schneider and Pala-
zotto, 1979) have proposed estimation methods for the three-
parameter distribution. For various reasons these techniques
have not been widely utilized. The nonlinear regression method
proposed by Margetson and Cooper (1984) is adopted here to
establish estimators for the three-parameter Weibull formu-
lation. Estimators are applied using failure data obtained from
the open literature. Specifically, Weibull parameters are esti-
mated from failure data reported by Chao and Shetty (1991).
The data were generated from test specimens fabricated from
a monolithic silicon nitride. Strength tests were conducted on
this material using three-point bend, four-point bend, and
pressurized-disk specimen geometries. Here the Weibull pa-
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rameters are estimated from the four-point bend test data, and
failure data from the three-point bend tests and pressurized-
disk tests are subsequently used to chalienge structural relia-
bility predictions made for these latter two geometries. To
conduct structural reliability analyses, the three-parameter
Weibull distribution was embedded in a reliability model known
as the principle of independent action (P1A). We point out
that the three-parameter form of the Weibull distribution can
be extended to Batdorf’s (1974, 1978) model and reliability
models proposed for ceramic matrix composites (see Duffy et
al., 1993; or Thomas and Wetherhold, 1991). All reliability
computations presented here were made utilizing the integrated
design program CARES (Ceramic Analysis and Reliability
Evaluation of Structures) (Nemeth et al., 1990).

In general, the objective of parameter estimation is the der-
ivation of functions (or estimators) that are dependent on the
failure data and that yield, in some sense, optimum estimates
of the underlying population parameters. Various performance
criteria can be applied to ensure that optimized estimates are
obtained consistently. Two important performance criteria are
estimate invariance and estimate bias. An estimator is invariant
if the bias associated with the estimated value is independent
of the true parameters that characterize the underlying pop-
ulation. Bias is a measure of deviation of the estimated pa-
rameter from the true population parameter. Here the
functional value of an estimator is a point estimate (in contrast
to an interval estimate) of the true population parameter. The
values of the point estimates computed from a number of
samples obtained from a population will vary from sample to
sample. A sample is defined as a collection (i.e., more than
one) of observations taken from a specified population, and
a population represents the totality of all possible observations
about which statistical inferences could be made. In this paper,
the observations are the failure strengths of test specimens
fabricated from ceramic materials. The issues of bias and in-
variance and their relationship to the functions proposed by
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Margetson and Cooper (1984) are explored numerically. In the
numerical studies, distributions of the point estimates are ob-
tained by taking numerous samples from the population and
computing point estimates as a function of sample size. If the
mean of a distribution of such estimates is equal to the value
of the true parameter for a given sample size, the associated
estimator is said to be unbiased. If an estimator yields biased
results, the value of the individual estimates can be corrected
if the estimators are invariant (see Thoman et al., 1969, for
the procedure associated with two-parameter maximum-like-
lihood estimators). The Monte Carolo simulations that are
presented later demonstrate that the functions are neither in-
variant nor unbiased.

Estimating Weibull Distribution Parameters

Weibull (1939, 1951) proposed the first probabilistic model
that accounted for scatter in failure strength and the size effect
encountered in structural components fabricated from brittle
materials. His approach is based on the weakest link theory
(WLT) attributed to Midgley and Pierce (1926). This earlier
research (sponsored by the textile industry) focused on mod-
eling yarn strength. Unlike Midgely and Pierce, who assumed
a Gaussian distribution for yarn strength, Weibull proposed
a unique probability density function for failure strength that
now bears his name. Weibull’s three-parameter probability
density function has the following form:

@) () oo (5))

for a continuous random variable x, when 0 < A < X, and

f(x)=0 @

)

for x < \. The cumulative distribution function is given by
the expression

F(x)=l—exp(— (i;—)\) )

for x > X\, and

©))

F(x)=0 1C))
for x < \. Here a(>0) is the Weibull modulus (or the shape
parameter), n(>0) is the scale parameter, and A\(>0) is the
threshold parameter. When applied to analyses of structural
components, the random variable x usually represents a com-
ponent of the Cauchy stress tensor or an invariant of this
tensor. For a uniaxial stress field in a homogeneous isotropic
material, application of Weibull’s theory yields the following
expression for the probability of failure

®=1-exp(—=B) o>7v &)
where
=7\~
= —) av ©®
5 Sy< B )
and
®=0 osvy M

Note that o, 8, and y are material parameters and will not
depend on the geometry of the test specimen. In this context
8 has the dimension of (stress)+(volume)'’®, v has the dimen-
sion of stress, and « is dimensionless.

Certain monolithic ceramics have exhibited threshold be-
havior (e.g., Quinn, 1989; Chao and Shetty, 1991). It is an-
ticipated that ceramic matrix composites will similarly exhibit
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onstrated if the failure data display a nonlinear behavior when %
the ranked probability of failure (®)) is represented as a func. 3
tion of the corresponding failure values. Careful fractography

must yield clear evidence that only one type of defect is causing

failure. Thus, the fractographic analysis must demonstrate that
the nonlinear behavior of the failure data is not the result of &
competing failure mechanisms. When experimental data in. 2%
dicate the existence of a threshold stress, a three-parameter ; ot
Weibull distribution should be employed in the stochastic fail- "3; .
ure analysis of structural components. However, the three-

parameter form of the Weibull distribution has been somewhat
ignored as a result of difficulties encountered in extracting

estimates of the parameters from experimental data. Marget-

son and Cooper (1984) proposed a relatively simple nonlinear
regression method to estimate the three distribution parame-
ters. Regression analysis postulates a relationship between two
variables. In an experiment, typically one variable can be con-
trolled (the independent variable) while the response variable
(or dependent variable) is uncontrolled. In simple failure ex-
periments the material dictates the strength at failure, indi-
cating that the failure stress is the response variable. The ranked
probability of failure (®;) can be controlled by the experi-
mentalist since it is functionally dependent on the sample size
(N). After numbering the observed failure stresses (o), 02, 03,
., o) in ascending order, and specifying

®Lo)=(i-0.5)/N (®)

then clearly the ranked probability of failure for a given stress
level can be influenced by increasing or decreasing the sample
size. The procedure proposed by Margetson and Cooper (1984)
adopts this philosophy. They assume that the specimen failure
stress is the dependent variable, and the associate ranked prob-
ability of failure becomes the independent variable.

Using Eq. (5), an expression can be obtained relating the
ranked probability of failure (®) to an estimate of the failure
strength (3;). Assuming uniaxial stress conditions in a test spec-
imen with a unit volume, Eq. (5) yields

5= +Blin(1/1- @] ©)
where &, is an estimate of the ranked failure stress. In addition,
&, B, and ¥ are estimates of the shape parameter (a), the scale

parameter (8), and the threshold parameter (y), respectively.
Defining the residual as

(10
where o; is the ith ranked failure stress obtained from actual

test data, then the sum of the squared residuals is expressed
as

5,~=&i—oi

N N N
> 6=, G+BwWI e —a)
i=1 il

Here the notation of Margetson and Cooper (1984) is adopted

where

(an

W,=In(1/1-®) (12)

Note that the forms of & and W; change with specimen ge-
ometry (see the discussion in a later section relating to the four-
point bend specimen geometry). It should be apparent that the
objective of this method is to obtain parameter estimates that
minimize the sum of the squared residuals. Setting the partial
derivatives of the sum of the squares of the residuals with
respect to &, B, and ¥ equal to zero yields the following three
expressions:

N ) N N .
N(Z a.( W.)”“) - (Z o,> (Z (W,)"")
Nl-l - . i=] : J-IL :
N> (W) - (Z (W.)‘“') (Z (W.)"">
i=1 t=1 i=1

(13)
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(5 ) (&) G & )

¥= N — /N N/F .
N (W)Yo - (5_‘, (W»"") (Z (W.-)“")
im} im1 i=l
(19)
and
N R N )
3 (W) (W) = 2 (W In(W)
=l im1
N -
-3 Y (WY (W) | Skeom (15)
i=1

in terms of the parameter estimates. The solution of this system
of equations is iterative. The third expression is used to check
convergence of theiterative solution. The initial solution vector
for this system is determined after assuming & = 1. Then B
is computed from Eq. (13) and ¥ is calculated from Eq. (14).
The values of these parameter estimates are then inserted into
Eq. (15) to determine if the convergence criterion is satisfied
to within some predetermined tolerance (Kconv)- If this expres-
sion is not satisfied, & is updated and a new iteration is con-
ducted. This procedure continues until a set of parameter
estimates are determined that satisfy Eq. (15).

Bias and Invarance

Issues relating to estimate bias and invariance are examined
numerically using Monte Carlo simulation methods. In this
study uniform random numbers are generated in groups of N
{(which characterizes the sample size), and thisis repeated 10,000
times for each value N. Each group of uniform random num-
bers is generated on the interval 0 to 1 using the Cray random
number function RANGET. The uniform random number is
converted to a strength observation by employing the inverse
of the three-parameter Weibull distribution for failure strength
given in Eq. (9). Defining (S)n as the ith random number on
the interval 0 to ! in a sample of size N, then the ith failure
strength is

B ‘ l/a
(eIn=7+ B[ln (m)]

where «, 8, and v are the true distribution parameters of an
infinite population characterized by a three-parameter Weibull
distribution. Again, uniaxial stress conditions are imposed on
a specimen of unit volume. However, this method can be
extended to other specimen geometries as well.

Once a sample of N random numbers is generated and con-
verted to failure strength observations, the estimators described
by Egs. (13)-(15) are used to obtain the point estimates &, 8.
and 4. Percentile distributions of the point estimates, as well
as a mean value of the point estimates, can be constructed by
repeating this sampling procedure for each value of N. Here
the Monte Carlo simulations are carried out 10,000 times for
each N. The arithmetic mean of each estimated parameter is
a measure of the bias associated with the estimator in deter-
mining that parameter, and is usually characterized as a func-
tion of the sample size (N). This is depicted graphically in
Fig. 1. In this figure the vertical axes represent a ratio of the
point estimate value to the parameter true value used to gen-
erate the failure observations. The true population parameters
are arbitrarily chosen, with a = 1.75, 8 = 1000, and A =
300. The horizontal axes represent the sample size N. Note
that for all three estimators the mean value of the ratio ap-
proaches 1 for large values of V. Thus, each estimator exhibits
the attractive property of decreasing bias with increasing sam-
ple size. However, the arithmetic mean associated with each
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Fig. 1 Arithmetic mean values and percentile distributions of the ratlo
of the point estimate to the true population parameter for sach estimator
(a = 1.75,8 = 1000, y = 300)

parameter is not invariant with respect to the underlying pop-
ulation parameter. This is evident in Fig. 2, which depicts the
arithmetic mean values of the parameter estimates from the
previous example along with arithmetic mean values from a
second example. For the second sample, the true population
parameter a has been increased such that a = 2.75, and the
other values of the true parameters are unchanged. Clearly the
arithmetic means associated with the Weibull modulus (a), the
scale parameter (8), and threshold stress (y) change for sample
sizes of less than 100. If the mean values remained invariant,
then the three curves in each graph in Fig. 2 would coincide
regardless of the values assumed for the true population pa-
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Fig.2 Arithmetic mean values of the ratio of the point estimate to the
true population parameter for each estimator (8 = 1000, y = 300)

rameters. This lack of invariance precludes unbiasing the point
estimates obtained using this method. If the estimators were
invariant, the bias could be removed in a systematic fashion
using the method outlined by Thoman et al. (1969) for the
maximum-likelihood estimate of the Weibull modulus. The
authors indicate that the ratio associated with the two-param-
eter maximum-likelihood estimator for the scale parameter is
also not invariant with respect to the underlying population
parameters. However, Thoman et al. (1969) were able to con-
struct a function that contained the ratio associated with the
scale parameter and the estimate of the Weibull modulus, but
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was not dependent on the true population parameters. This
function enabled Thoman et al. (1969) to establish unbiasing
factors and confidence bounds for the maximum-likelihood
estimate of the two-parameter scale parameter. Similar func-
tions for the nonlinear regression estimators discussed in this
paper have not been developed. Thus, removing the bias as-
sociated with these estimators is not possible, and the design
engineer should recognize that the amount of bias may be
significant for small sample sizes.

Along with the mean value, the 10th and 90th percentile
distributions are depicted for each estimator in Fig. 1. These
percentile distributions are related to confidence bounds for a
point estimate. The percentile distributions are obtained by
ranking in order (from lowest to highest value) the ratios of
point estimates to the true value of the distribution parameter.
In this case the 10th percentile distribution represents the ratio
associated with the 1000th ranked value. Hence, 999 ratios
had lesser values. Similarly, the 90th percentile distribution
represents the ratio associated with the 9000th ranked value.
If the number of samples was increased from 10,000 to infinity,
then these ranked values would yield the exact confidence
bounds for the estimators. Note that for these estimators the
confidence bounds narrow with increasing sample size (N).
This is indicated by the decreasing separation in the percentile
distributions. However, the percentile distributions are not
invariant with respect to the true population parameters. Again,
increasing a from 1.75 to 2.75 affected the percentile distri-
butions (Fig. 3). This precludes the computation of confidence
bounds on parameter estimates since the value of the true
population parameter (the quantity being estimated) would
have to be known a priori.

Application—Parameter Estimation and Reliability
Analysis

In this section, parameters from the sintered silicon nitride
(grade SNW-1000, GTE Wesgo Division) data presented by
Chao and Shetty (1991) are estimated. The four-point bend,
the three-point bend, and the pressurized-disk data are listed
in Table 1. Focusing on the four-point bend specimen, the
support span for this text fixture was 40.373 mm and the inner
load span was 19.622 mm. The cross sections of the test spec-
imens were 4.0138 mm in width and 3.1106 mm in height.! All
failures occurred within the 19.6-mm gage section. Thus, each
specimen is assumed to be subjected to pure bending. Under
this assumption, Eq. (6) becomes (see Weibull and Daniel,

64)
AV \[o=2\(2=2\"
5= (2<a+n)( ” )( 7) o

V = bkl =243.0 mm’ (18)

and o (=Mc/I) is the outer fiber stress, assuming that the
material behaves in a linear elastic fashion. Chao and Shetty
examined the fracture surfaces of failed specimens using optical
and scanning electron microscopy. These studies indicate that
failures were initiated at subsurface pores (i.e., a volume de-
fect). This type of fracture site consistently occurred in all
three specimen geometries.

Once again, Eq. (5) can be used to express the functional
relationship between the ranked probability of failure (®;) and
the estimate of the failure strength (3). Using the deﬁnit%on
of B given in Eq. (17), then the following relationship exists
between @; and &;:

5i=4" +B*[ain(1/1 - @) (19

where

'All specimen dimensions and failure stresses in Tabte 1 (including the three-
point and the pressurized-disk geometries) were obtained from 2 personal com-

munication with Chao and Shetty.
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for pure bending conditions. Here

and

are introduced. At
annot be formulat

a'=a+1

N 1/(1 + &)
o[ (222) ]

¥y =9

entile distributions of the ratio of the point estimate to the
true population parameter for sach estimator (3 = 1000, y = 300)

(20)
@1

(22)

this point the residual defined by Eq. (10)
ed since Eq. (19) cannot be solved explicitly
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Table 1 Estimated parameters for silicon nitride
Specimen Strength, MPa
number
Three-point bend | Four-point bend | Pressurized disk

1 715.6 613.9 349.7
2 729.6 623.4 575.5
3 741.0 639.3 3587.4
4 738.6 642.1 622.0
5 T4 651.8 636.7
6 773.1 662.4 639.3
1 824.2 669.5 642.6
8 830.4 672.8 646.3
9 832.8 681.3 659.3
10 863.2 682.0 639.6
11 868.2 699.0 660.4
12 870.9 714.5 661.4
13 878.3 1174 667.8
14 881.1 725.5 668.9
15 899.4 741.6 670.8
16 900.6 744.9 684.8
17 905.0 751.0 686.2
18 913.8 761.7 691.3
19 916.8 763.9 693.8
20 928.0 774.2 698.1
2] 931.0 7916 706.9
22 934.6 795.2 718.1
23 935.1 829.8 718.8
24 941.1 838.4 726.4
25 941.6 856.4 732.3
26 949.1 868.3 738.1
27 951.6 882.9 748.2
28 953.8 ————- 771.5
29 956.5 ————— 780.7
30 979.9 —— 786.3
31 —e-- ——ee- 796.2
32 ——— cvane 811.6

for the estimated ranked failure stress (5,). However, several
alternatives can be pursued to effect a solution. Margetson
and Cooper (1984) indicate that the actual ranked failure stress
() should be substituted for §; on the right-hand side of Eq.
(19). Defining

W;=aln(l/1-@®) (23)

then Egs. (13)-(15) can be solved for &°, 8°, and 4°. Estimated
values of the material parameters «, 8, and v would then be
computed from Eq. (20)-(22). However, once the substitution
of

&,' =0; (24)

is made, Eq. (11) no longer defines the sum of the squared
residuals. Exactly what is being minimized is difficult to define
(an approximate residual, perhaps). However, this approxi-
mate method yields fairly good results (Duffy et al., 1993).
This becomes evident in the following discussion in which
results of the approximate method are compared to a more
rigorous solution. )

Note that Eqs. (13)-(15) and Eq. (19) represent N + 3
equations in terms of N + 3 unknowns (&°, 8°, 4°, and 5)).
The alternative solution involves finding an initial estimate of
the Weibull parameters using the approach where the estimated
failure strengths are substituted with the actual strength data.
After computing an initial estimate of the parameters, Eq. (19)
is solved numerically (N times) for ;. With Eq. (12) redefined
as

W,=oin(l/1-®) 25)
then Eqs. (13) and (14) are solved for undated values of 8°
and 4° (using the previous value of &°). The convergence
criterion given by Eq. (15) is checked. If the criterion is not
satisfied, &° is updated, and Eq. (19) is again solved numer-
ically for ;. This iterative process is repeated until the con-
vergence criterion is satisfied.
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Fig. 4 Comparison of the probability of fallure for the four-point spec-
Imen using the two- and three-parameter Weibull distribution

Both procedures are used to estimate parameters from the
four-point bend test data listed in Table 1. The approximate
method produces estimates of & = 1.53, B = 988.6,and ¥ =
559.67. The procedure that includes the solution for §; yields
parameter estimates of & = 1.68, B = 861.6, and ¥ = 558.1.
In addition, maximum-likelihood estimators are used to obtain
point estimates for a two-parameter Weibull distribution. This
technique gives estimated parameter values of & = 10.2 and
B = 978.1 (with 4 = 0). The values obtained from the two-
parameter maximum-likelihood estimators differ from the val-
ues reported by Chao and Shetty (1991). They used an aver-
aging technique proposed by Batdorf and Sines (1980) that
combines data from several test specimens. The pooled data
are used to compute estimates from the three and four-point
bend data. The estimated scale parameters from both config-
urations are averaged and, if the method of Batdorf and Sines
(1980) is strictly adhered to, then the residuals from two data
points are minimized. The authors feel that for this method
to yield meaningful results, more than two specimen geometries
are needed. The results of the maximum-likelihood estimators
and both nonlinear regression methods are presented in Fig.
4, where the probability of failure is plotted as a function of
the failure stress; that is, Eq. (5) is graphed using the different
parameter estimates. The failure data are included using Eq.
(8) to establish the vertical position of each data point. The
straight line represents the two-parameter fit to the data. The
nonlinear curves represent the three-parameter fit to the data.
It is evident that the estimated three-parameter distributions
are more efficient in predicting the failure data in the high-
reliability region. Also note that there is very little difference
between the two procedures used to establish the three-param-
cter estimates.

With the estimated Weibull parameters obtained using the
procedure that includes the solution for &, reliability predic-
tions are made for the three-point bend and the pressurized-
disk geometries used in the experimental study by Chao and
Shetty (1991). Both specimen geometries are depicted in Fig.
5. The geometries are modeled using MSC/NASTRAN to de-
termine the structural response of the specimens to mechanical
loads. The three-point bend geometry is modeled with 136
eight-node elements (MSC/NASTRAN CQUADS). The mesh
for this specimen is shown in Fig. 6. The stress distribution
obtained from the finite element analysis is subsequently used
as input for the integrated design program CARES (Nemeth
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Fig.5 Geometry of the three-polint bend specimen and the pressurized
disk specimen
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{b) Pressurized disk specimen.

Fig. 8 Finite element discretization

et al., 1990). A volume flaw analysis is performed where the
volume of a shell element is determined by calcu}ating the
midplane area and multiplying this value by the thlck.ncss of
the element. The probability of failure curve is optamed by
scaling (i.c., linearly increasing and decreasing) a smgle stress
distribution a number of times. For each stress dismbut‘xon a
reliability analysis is performed with the CARES algorithm.
An appropriate number of reliability computations are made
to produce the nonlinear curve in Fig. 7. The linear (t_w_o-
parameter) curve is established by determining the probab!hty
of failure at a single point on the curve and drawing a straight
line through this point using the estimated Weibull modulus,

Transactions of the ASME

'l""-‘A.’le

Ly



9 - (@] Data fo)
Two-parameter

— — Three-parameter

<©
o
[T

Probability of failure, percent

| ] N

700 800 900 1000
Fracture stress, MPa

{b) Pressurized-disk specimen.
Fig. 7 CARES probability of failure results and failure data

500

600

which coincides with the slope of the linear curve. The data
clearly indicate nonlinear behavior; however, both the two-
and the three-parameter formulations yield conservative esti-
mates in the high-reliability regions, but nonconservative es-
timates in the high probability of failure region. Both follow
the trend of the data in the 5 to 60 percent probability of failure
range of the graph.

The pressurized-disk geometry is modeled with 260 six-node
elements (MSC/NASTRAN CTRIAX6). The axisymmetric
mesh for this specimen is also shown in Fig. 6. The probability
of failure curves are depicted in Fig. 7. All probability of failure
curves are generated by computing component reliability from
numerous stress distributions that are obtained, once again,
by linearly increasing and decreasing a single stress distribu-
tion. Here the three-parameter formulation clearly yields a
better fit to the data. The two-parameter formulation is dis-
tinctly conservative at all stress levels which can lead to over-
designed structural components. To demonstrate this, the pa-
rameter estimates obtained from the four-point bend data are
used to compute the probability of failure of an aerospace
component. Specifically, the component analyzed is a space
shuttle main engine (SSME) high-pressure turbopump blade.
The finite clement mesh used to analyze this turbopump blade
is depicted in Fig. 8. Moss and Smith (1987) used this mesh
to analyze the dynamic characteristics of the blade. The mesh
consists of 1025 brick elements (MSC/NASTRAN CHEXA).

Journal of Engineering for Gas Turbines and Power

Fig. 8 Finite element discretization of turbopump blade

The shank of the blade is fully constrained. For the purpose
of demonstration, it is assumed that the blade is fabricated
from the monolithic silicon nitride material discussed in Chao
and Shetty (1991). In the analysis Young’s modulus is taken
as 285.0 GPa and the Poisson ratio is 0.23. The specific load
case studied represents a rotational speed of 40,000 rpm at
room temperature. At this rotational speed the two-parameter
formulation (using the PIA model) results in a component
failure probability (Py) of 75.2 percent. The three-parameter
formulation results in a failure probability (Fy) of 0.04 per-
cent. Utilization of the monolithic material would be sum-
marily rejected based on the limited data available and the
results of the two-parameter estimates. However, the results
from the three-parameter formulation could prompt further
consideration. The notable difference in the probability of
failure does not indicate conclusively that the underlying pop-
ulation is characterized by a three-parameter Weibull distri-
bution. Additional test data may clearly demonstrate whether
the underlying population is characterized by a two- or three-
parameter Weibull distribution. In addition, possible design
studies could result in a further reduction in the component
failure probability. Whether or not further redesign would
bring the component failure probability within the stringent
limits established for various shuttle components is not the
issue here. The authors do not advocate using monolithic sil-
icon nitride in the fabrication of SSME turbopump blades.
Rather, this aerospace example emphasizes that the common
use of the two-parameter formulation can lead to extremely
conservative design decisions.

Conclusions

Enough experimental data exists to suggest threshold be-
havior (indicated by a nonlinear behavior similar to that dis-
played in Fig. 4) in certain monolithics. However, whether
nonlinear behavior can be attributed to the existence of a
threshold stress or competing failure mechanisms is open ta
question because of the lack of careful fractographic analysis
for most data sets (except for the Chao and Shetty data dis-
cussed previously and obtained through personal communi-
cation). This paper has reviewed a number of aspects related
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to the simple nonlinear regression technique proposed by Mar-
getson and Cooper (1984). From limited numerical studies it
is concluded that the estimators are well-behaved in the sense
that bias is minimized, and confidence bounds tighten as the
sample size is increased. However, the estimators are not in-
variant with respect to the underlying parameters that char-
acterize a population. This precludes establishing exact
confidence bounds and unbiasing factors.

The estimators perform reasonably well in comparison to
the two-parameter maximum-likelihood estimators when both
are applied to the silicon nitride data of Chao and Shetty (1991).
Using an improved estimator based on the method proposed
by Margetson and Cooper (1984), the three-parameter Weibull
distribution easily captures the nonlinear trend of the failure
data. All reliability computations are made using the simplified
PIA model but better correlation to the failure data might be
obtained if other more rigorous reliability models were em-
ployed. The authors are currently pursuing this analytical ap-
proach.

Although the three-parameter formulation obviously pro-
vides a better fit to the pressurized-disk data, this may not be
readily evident with the three and four-point bend data. Good-
ness-of-fit statistics such as the Kolmogorof’ f-Smirnoff statistic
and the Anderson-Darling statistic should be used to establish
which form of the Weibull distribution would best fit the
experimental data. These approaches are currently being stud-
ied by the authors.

Finally an aerospace component is analyzed, and the results
may indicate the conservativeness of the two-parameter for-
mulation. The authors advocate the use of the three-parameter
formulation of the Weibull distribution when experimental
data exhibits threshold behavior. Even though the estimates
proposed by Margetson and Cooper (1984) are not invariant,
additional testing can be conducted to minimize the bias as-
sociated with the parameter estimates. As the reliability anal-
ysis of the SSME turbopump blade indicates, the costs from
additional tests may be well worth the dramatic decrease in a
component probability of failure.
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RELIABILITY ANALYSIS OF SINGLE CRYSTAL NiAl TURBINE BLADES
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Intr ion

As part of a co-operative agreement with General Electric Aircraft Engines (GEAE), NASA LeRC is
modifying and validating the Ceramic Analysis and Reliability Evaluation of Structures (CARES ref. 1)
algorithm for use in design of components made of high strength NiAl based intermetallic materials.

NiAl single crystal alloys are being actively investigated by GEAE as a replacement for Ni-based single
crystal superalloys for use in high pressure turbine blades and yanes. The driving force for this research
lies in the numerous property advantages offered by NiAl alloys (ref. 2) over their superalloy counterparts.
These include a reduction of density by as much as a third without significantly sacrificing strength, higher
melting point, greater thermal conductivity, better oxidation resistance, and a better response to thermal
barrier coatings. The current drawback to high strength N iAl single crystals is their limited ductility.
Consequently, significant efforts including the work agreement with GEAE are underway to develop testing
and design methodologies for these materials.

The approach to validation and component analysis involves the following steps (Fig. 2): determination of
the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material;
measurement of the failure strength envelope of the material; coding of statistically based reliability models;
verification of the code and model; and modeling of turbine blades and vanes for rig testing.

teri in, imen ign

Brittle materials frequently fail from a single, strength limiting origin due to low toughness. The strength
of such a system is thus governed by the weakest-link within the system and is therefore dependent on the
surface area and volume stressed during testing. Weibull statistics (ref. 5) are commonly used for reli-
ability analysis of components fabricated from such materials. The calculated failure probability is
dependent on the stress state and the material properties of the component.

Several isotropic theories applicable to ceramics and glasses have been incorporated into the public domain
CARES (ref. 1) code developed at NASA Lewis. This post-processor code, when combined with a finite
element stress analysis, calculates fast fracture probability of a brittle, monolithic structural component. As
part of the cooperative agreement with GEAE the code will be modified to model anisotropic materials,
such as single crystal NiAl.

The material being considered has limited ductility, is highly anisotropic (Young’s modulus varies 95 to 2n
GPa; 13.78 E3 ksi to 39.305 E3 ksi) and made in relatively small billets (25 x 50 x 100 mm; 0.98 x 1.96x
3.94 in.) that will be used individually to produce a vane or blade. Therefore, the statistical nature and

I Resident research associate at NASA LeRC.
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source of fracture is being studied via flexural testing of beam specimens (ref. 3), with statistical analysis
of the data and fractography performed on all of the post-tested samples (ref. 4). Flexural testing allows
many samples to be removed from a particular region of a given billet, thereby allowing determination of
billet-to-billet and within billet consistency. These factors will cause a variation in component reliability.
Furthermore, in contrast to tensile testing, flexural testing allows the location of failure to be readily identi-
fied because the asymmetry of flexural loading results in a specific fracture pattern.

Two basic types of flaws are typically encountered in brittle materials such as ceramics or glasses: surface
defects and volumetric defects. Volumetric defects include large grains, pores, agglomerates and inclu-
sions, while surface defects include exposed volume defects (e. g. a pore machined open) and machining or
handling damage that occurs during specimen/component fabrication (ref. 4).

Flexural strength results for the single crystal NiAl indicate the material to exhibit a wide dispersion in
strength (Fig. 3) that can be characterized via normal or Weibull statistics. Failure origins were identified
in 27 of 29 specimens tested. In all cases failure originated from regions of interdendritic precipitation
(Fig. 4). These interdendritic regions always contained a Ni-Al-Hf rich phase (Fig. 5) that was confirmed
by x-ray analysis to be the Heusler phase Ni,AlHf. Roughly half of the initiation sites also contained HfC
dendrites within the interdendritic Heusler phase (Fig 6). The HfC phase was identified by Auger electron
spectroscopy and confirmed by the shape of the carbon peak (Fig. 7).

Other strength tests planned for verification work include flexure (3 and 4-point), pure tension, pure
compression, torsion and biaxial flexure. To date, uniaxial and biaxial flexural tests (Fig. 3) have been
conducted, and a torsion specimen is being designed and verified relative to handbook solutions.
Verification of a failure theory can be accomplished via measurement of points on the failure envelope and
comparison to predictions by the model and code (Fig. 8). Each point on the failure envelope represents a
stress state and thus can be measured experimentally for a given material via strength testing with various
geometries. As the material exhibits elastic anisotropy and variation in fracture toughness with orientation
(ref. 7), several orientations will be considered in strength testing.

For the torsion specimen design, in an effort to conserve time, materials and machining costs, finite
clement analysis was used to characterize the stress response of several specimens. A baseline model and
several variations were analyzed using the ANSYS 5.0 finite element package. The intent was to optimize
the stress response of the specimen such that highest stresses would occur in the gage section of the

specimen, thus concentrating failure within this section. Upon completion of the stress analysis, a CARES _

analysis was conducted for each specimen as well.

Each model consisted of three parts: the specimen, a three jaw chuck assembly used to grip the specimen,
and a sleeve of surface elements around the volume of the specimen (see Fig. 9). Note that only half of the
length of the specimen was modeled to take advantage of symmetry. A desired maximum principal stress
of 800 MPa (116.0 ksi) was specified for each specimen. To obtain this stress level, a tangential force in
the circumferential direction was applied at third points to the extremities of the chuck assembly.

A total of nine specimen geometries were analyzed. The use of parametric design language within ANSYS
facilitated easy manipulation of design variables and model creation. The transition length between the
gage section and the grip section of the specimen served as one design parameter. The gage diameter was
the other. The different values for these parameters appear in Fig. 10. The intent was to eliminate stress
risers in the transition section of the specimen and keep the maximum stress within the gage section. A
constant, low stress field was also desirable in the grip section of the specimen. The baseline design
satisfied both of these requirements. A plot of the first principal stress for this model is shown in Fig. 11.
As the gage section of the specimen became larger, higher stresses began to migrate into the transition
section and beyond into the grip section. =Also, as the transition length between the grip and gage sections
was changed, higher stresses began to migrate into the transition section. Of the nine designs, no model
behaved better than the baseline design.

56-2
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The subsequent reliability analyses reinforced these results. Developing a specimen with high probability of
failure in the gage section and low or no probability of failure in the transition and grip sections was the
objective. Since it is anticipated that this material will exhibit the so called "size effect” (i.e., decreasing
component strength with increasing component size), the overall stressed area of the component would
likely affect the reliability results. This factor was monitored as the results of the different models were
compared. Again, the various iterations in the design provided no reason to switch from the baseline

specimen design.
Component Analysis

As a starting point for the component feasibility study, a two dimensional finite element model of a double
tang blade post and disk assembly was obtained from General Electric (see Fig. 12). This was used with
the NiAl failure data (Fig. 3) to perform the reliability analysis. Fig. 13 shows the approach used for this
type of analysis. Using this approach, the design engineer can concentrate on areas of the component
which possess low reliability and modify them accordingly, thus leading to the optimization of the
component.

Only the blade dove tail section was considered in the reliability analysis. Two separate analyses were
conducted. The first used the entire set of 29 failure data points to calculate the Weibull parameters. The
second involved the assumption that through improved processing techniques, the lowest five failure points
would be eliminated, hence the Weibull parameters were calculated from the 24 highest failure strength
values. The results of the reliability analysis and the respective Weibull parameters appear in Fig. 14.
This analysis clearly shows the effect that reduced scatter has on a reliability of a component fabricated
from a brittle material system.

This effort was successful in demonstrating the feasibility of such design procedures; however, to fully
characterize a component fabricated from this type of material system, a failure criterion has to be
developed that captures the anisotropic behavior of the material. This is a subject for future work and is
identified as a milestone within the work agreement. Other areas of future work include a more complete
characterization of the material’s behavior along various crystallographic orientations. Billet to billet
strength variation as well as strength variation within each billet will also be monitored.
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= Modify and validate the CARES reliability code for use in design
of components made from low ductility NiAl based intermetallics.
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— This effort is part of a co—operative work agreement between
General Electric Aircraft Engines and NASA LeRC.
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APPROACH
— Determine the statistical nature and source of fracture in high—
strength NiAl single crystal material

— Measure the fracture strength envelope of the material
(may involve characterizations in different material directions)

— Develop and code the appropriate failure model to capture
both the statistical nature of failure and the anisotropic
behavior of the material

~ Verify the model and reliability code

— Model turbine vanes and blades for rig testing

Fig. 2 CO-04-00044
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NjAl TEST SPECIMEN FRACTOGRAPHY

— Fractography (SEM/EDS) was performed on 27 of 29 speciméns
(Origins for 2 were not recovered)

—_ Al had fracture origins at Ni;AIHf or HfC particles or a
combined interdendritic particle

100 pm

SEM image of failure origin High mag. image of failure origin

Fig. 4
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TEST SPECIMEN ANALYSIS

Finite element model of specimen and chucks
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F BASELINE TORSION SPECIMEN

PRINCIPAL STRESS PLOT O

PROBABILISTIC COMPONENT DESIGN PROCEDURE
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Fig. 11 CD-94-68053

e Approach:

Test Specimen
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-
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Material failure characterization

Complex Geometries

Fractographic examination of ruptured specimens

Component finite-element analysis

Component reliability evaluation
Design optimization

Fig- 12
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BLADE AND DISK ANALYSIS

Finite element model of blade post and disk assembly

d

Blade post

VTurbinc disk

Fig. 13

CD-94-88055

SUMMARY OF CARES ANALYSIS OF BLADE

Two reliability analyses were conducted on blade design

— Two sets of Weibull parameters were used

29 Data points 24 Data points
Alpha 8.32 15.30
Beta (ksi) - 51,021 74,092
Reliability 99.46 % 99.99 %

Fig. 14
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CONCLUSIONS

— Failure origins can be identified in low ductility
NiAl’s with appropriate testing

4 — Torsion specimen geometry was verified through
FEM and CARES analyses

— Methods in place for component reliability analyses

— Improved processing techniques can be used to
improve component reliability

Fig. 15 CD-94-68057

FUTURE WORK

— Test material for billet to billet strength variation
— Test material for strength variation within a billet

— Test for statistical variation along different material
directions

— Develop appropriate failure model for this material

Fig- 16 CD-94-68058
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Standard Practice for
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Reporting Uniaxial Strength Data and Estimating Weibull
Distribution Parameters for Advanced Ceramics’

This standard is issued under the fixed designation C 1239; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (¢) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers the evaluation and subsequentV

reporting of uniaxial strength data and the estimation of
probability distribution parameters for advanced ceramics
that fail in a brittle fashion. The failure strength of advanced
ceramics is treated as a continuous random variable. Typi-
cally, a number of test specimens with well-defined geometry
are failed under well-defined isothermal loading conditions.
The load at which each specimen fails is recorded. The
resulting failure stresses are used to obtain parameter esti-
mates associated with the underlying population distribu-
tion. This practice is restricted to the assumption that the
distribution underlying the failure strengths is the two-
parameter Weibull distribution with size scaling. Further-
more, this practice is restricted to test specimens (tensile,
flexural, pressurized ring, etc.) that are primarily subjected to
uniaxial stress states. Section 8 outlines methods to correct
for bias errors in the estimated Weibull parameters and to
calculate confidence bounds on those estimates from data
sets where all failures originate from a single flaw population
(that is, a single failure mode). In samples where failures
originate from multiple independent flaw populations (for
example, competing failure modes), the methods outlined in
Section 8 for bias correction and confidence bounds are not
applicable.

1.2 Measurements of the strength at failure are taken for
one of two reasons: either for a comparison of the relative
quality of two materials, or the prediction of the probability
of failure (or, alternatively, the fracture strength) for a
structure of interest. This practice will permit estimates of
the distribution parameters that are needed for either. In
addition, this practice encourages the integration of mechan-
ical property data and fractographic analysis.

1.3 This practice includes the following:

Section
Scope ]
Referenced Documents 2
Terminology 3
Summary of Practice 4
Significance and Use 5
Outlying Observations 6
Maximum Likelihood Parameter Estimators for Competing 7
Flaw Distributions
Unbiasing Factors and Confidence Bounds 8
Fractography 9
Examples 10

! This practice is under the jurisdiction of ASTM Committee C-28 on
Advanced Ceramics and is the direct responsibility of Subcommittee C28.02 on
Design and Evaluation.

Current edition approved April 15, 1993. Published June 1993.

Section
Keywords 11
Computer Algorithm MAXL X1
Test Specimens with Unidentified Fracture Origins X2

1.4 The values stated in SI units are to be regarded as the
standard.

2. Referenced Documents

2.1 ASTM Standards:

C 1145 Terminology of Advanced Ceramics?

D 4392 Terminology for Statistically Related Terms?

E 6 Terminology Relating to Methods of Mechanical
Testing*

E 178 Practice for Dealing With Outlying Observations®

E 456 Terminology Relating to Quality and Statistics®

2.2 Military Handbook:

MIL-HDBK-790 Fractography and Characterization of
Fracture Origins in Advanced Structural Ceramics®

3. Terminology

3.1 Proper use of the following terms and equations will
alleviate misunderstanding in the presentation of data and in
the calculation of strength distribution parameters.

3.1.1 censored strength data—strength measurements

~ (that is, a sample) containing suspended observations such as

that produced by multiple competing or concurrent flaw
populations. .

3.1.1.1 Consider a sample where fractography clearly
established the existence of three concurrent flaw distribu-
tions (although this discussion is applicable to a sample with
any number of concurrent flaw distributions). The three
concurrent flaw distributions are referred to here as distribu-
tions A, B, and C. Based on fractographic analyses, each
specimen strength is assigned to a flaw distribution that
initiated failure. In estimating parameters that characterize
the strength distribution associated with flaw distribution 4,
all specimens (and not just those that failed from Type A
flaws) must be incorporated in the analysis to ensure
efficiency and accuracy of the resulting parameter estimates.
The strength of a specimen that failed by a Type B (or Type
C) flaw is treated as a right censored observation relative to
the A flaw distribution. Failure due to a Type B (or Type C)
flaw restricts, or censors, the information concerning Type A

2 Annual Book of ASTM Standards, Vol 15.01.

3 Discontinued—see 1992 Annual Book of ASTM Standards, Yol 07.02.

4 Annual Book of ASTM Standards, Vols 03.01 and 08.03.

s Annual Book of ASTM Siandards, Vol 14.02.

6 Available from Standardization Documents Order Desk, Bldg. 4 Section D,
700 Robbins Ave., Philadeiphia, PA 1911 1-5094, Attn: NPODS.
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flaws in a specimen by suspending the test before failure
occurred by a Type A flaw (1).” The strength from the most
severe Type A flaw in those specimens that failed from Type
B (or Type C) flaws is higher than (and thus to the right of)
the observed strength. However, no information is provided
regarding the magnitude of that difference. Censored data
analysis techniques incorporated in this practice utilize this
incomplete information to provide efficient and relatively
unbiased estimates of the distribution parameters.

3.1.2 competing failure modes—distinguishably different
types of fracture initiation events that result from concurrent
(competing) flaw distributions.

3.1.3 compound flaw distributions—any form of multiple
flaw distribution that is neither pure concurrent nor pur¢
exclusive. A simple example is where every specimen con-
tains the flaw distribution 4, while some fraction of the
specimens also contains a second independent flaw distribu-
tion B.

3.1.4 concurrent flaw distributions—a type of multiple
flaw distribution in a homogeneous material where every
specimen of that material contains representative flaws from
each independent flaw population. Within a given specimen,
all flaw populations are then present concurrently and are
competing with each other to cause failure. This term is
synonymous with “competing flaw distributions.”

3.1.5 effective gage section—that portion of the test spec-
imen geometry that has been included within the limits of
integration (volume, area, or edge length) of the Weibull
distribution function. In tensile specimens, the integration
may be restricted to the uniformly stressed central gage
section, or it may be extended to include transition and
shank regions.

3.1.6 estimator—a well-defined function that is depen-
dent on the observations in a sample. The resulting value for
a given sample may be an estimate of a distribution
parameter (a point estimate) associated with the underlying
population. The arithmetic average of a sample is, for
example, an estimator of the distribution mean.

3.1.7 exclusive flaw distributions—a type of multiple flaw
distribution created by mixing and randomizing specimens
from two or more versions of a material where each version
contains a different single flaw population. Thus, each
specimen contains flaws exclusively from a single distribu-
tion, but the total data set reflects more than one type of
strength-controlling flaw. This term is synonymous with
“mixtures of flaw distributions.”

3.1.8 extraneous flaws—strength-controlling flaws ob-
served in some fraction of test specimens that cannot be
present in the component being designed. An example is
machining flaws in ground bend specimens that will not be
present in as-sintered components of the same material.

3.1.9 fractography—the analysis and characterization of
patterns generated on the fracture surface of a test specimen.
Fractography can be used to determine the nature and
location of the critical fracture origin causing catastrophic
failure in an advanced ceramic test specimen or component.

3.1.10 population—the totality of potential observations

7 The boldface numbers in parentheses refer to the list of references at the end
of this practice.
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about which inferences are made.

3.1.11 population mean—the average of all potential mea-
surements in a given population weighted by their relative
frequencies in the population.

3.1.12 probability density function—the function f{x) is a
probability density function for the continuous random
variable X if:

fx)z0 )
and

J-_, fixydx =1 -

The probability that the random variable X assumes a value
between a and b is given by the following equation:

Prla<X<b)= ij(x)dx
4 (3)

3.1.13 sample—a collection of measurements or observa-
tions taken from a specified population.

3.1.14 skewness—a term relating to the asymmetry of a
probability density function. The distribution of failure
strength for advanced ceramics is not symmetric with respect
to the maximum value of the distribution function but has
one tail longer than the other.

3.1.15 statistical bias—inherent to most estimates, this is
a type of consistent numerical offset in an estimate relative to
the true underlying value. The magnitude of the bias error
typically decreases as the sample size increases.

3.1.16 unbiased estimator—an estimator that has been
corrected for statistical bias error.

3.1.17 Weibull distribution—the continuous random
variable X has a two-parameter Weibull distribution if the
probability density function is given by the following equa-

tions:
s I
fly=0 x=0 5)

and the cumulative distribution function is given by the
following equations:

Fxy=1- exp[ - (§>m] x>0 6)
or
Fx)=0 x=<0 )]
where:

m= Weibull modulus (or the shape parameter) (>0), and
B = scale parameter >0).

3.1.17.1 The random vanable representing uniaxial ten-
sile strength of an advanced ceramic will assume only
positive values, and the distribution is asymmetrical about
the mean. These characteristics rule out the use of the
normal distribution (as well as others) and point to the use of
the Weibull and similar skewed distributions. If the random
variable representing uniaxial tensile strength of an advanced
ceramic is characterized by Eqs 4 through 7, then the
probability that this advanced ceramic will fail under an
applied uniaxial tensile stress o is given by the cumulative
distribution function as follows:
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P=1- cxp[_(i)'"] >0 ® < = likelihood function.
ay m = Weibull modulus.

P=0 o=<0 m = estimate of the Weibull modulus.

f= [ 2~ (9) ’;1 = - « .

[ v = unbiased estimate of the Weibull modulus.
where: » ' N = number of specimens in a sample.
P, = probability of failure, and P, = probability of failure.

0, = Weibull characteristic strength.
Note that the Weibull characteristic strength is dependent on
the uniaxial test specimen (tensile, flexural, or pressurized
ring) and will change with specimen size and geometry. In
addition, the Weibull characteristic strength has units of
stress and should be reported using units of megapascals or
gigapascals.

3.1.17.2 An alternative expression for the probability of
failure is given by the following equation:

Pr=1- exp[— J-V(alo)m dV] >0 (10)

The integration in the exponential is performed over all
tensile regions of the specimen volume if the strength-
controlling flaws are randomly distributed through the
volume of the material, or over all tensile regions of the
specimen area if flaws are restricted to the specimen surface.
The integration is sometimes carried out over an effective
gage section instead of over the total volume or area. In Eq
10, o, is the Weibull material scale parameter. The param-
eter is a material property if the two-parameter Weibull
distribution properly describes the strength behavior of the
material. In addition, the Weibull material scale parameter
can be described as the Weibull characteristic strength of a
specimen with unit volume or area loaded in uniform
uniaxial tension. The Weibull material scale parameter has
units of stress:(volume)!/™ and should be reported using
units of MPa-(m)*™ or GPa-(m)>/™ if the strength-con-
trolling flaws are distributed through the volume of the
material. If the strength-controlling flaws are restricted to the
surface of the specimens in a sample, then the Weibull
material scale parameter should be reported using units of
MPa-(m)?/™ or GPa-(m)*/™. For a given specimen geom-
etry, Eqs 8 and 10 can be equated, which yields an expression
relating o, and o,. Further discussion related to this issue can
be found in 7.6.

3.2 For definitions of other statistical terms, terms related
to mechanical testing, and terms related to advanced ce-
ramics used in this practice, refer to Terminologies D 4392,
E 456, C 1145, and E6 or to appropriate textbooks on
statistics (2-5).

3.3 Symbols:

A = specimen area (or area of effective gage section, if
used).

b = gage section dimension, base of bend test spec-
imen.

d = gage section dimension, depth of bend test spec-
imen.

F(x) = cumulative distribution function.
flx) = probability density function.

L, =length of the inner load span for a bend test
specimen.

L, =length of the outer load span for a bend test
specimen.
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= number of specimens that failed from the flaw
population for which the Weibull estimators are
being calculated.

= intermediate quantity defined by Eq 27, used in
calculation of confidence bounds.

= specimen volume (or volume of effective gage
section, if used).

= random variable.

= realization of a random variable X.

= Weibull scale parameter.

= stopping tolerance in the computer algorithm

r

= estimate of mean strength.

= uniaxial tensile stress.

= maximum stress in the ith test specimen at failure.

= maximum stress in the jth test specimen at failure.

= Weibull material scale parameter (strength relative
to unit size) defined in Eq 10.

= Weibull characteristic strength (associated with a
test specimen) defined in Eq 8.

= estimate of the Weibull material scale parameter.

= estimate of the Weibull characteristic strength.

4. Summary of Practice

4.1 This practice enables the experimentalist to estimate
Weibull distribution parameters from failure data. Begin by
performing a fractographic examination of each failed spec-
imen (optional, but highly recommended) in order to char-
acterize fracture origins. Usually discrete fracture origins can
be grouped by flaw distributions. Screen the data associated
with each flaw distribution for outliers. Compute estimates
of the biased Weibull modulus and Weibull characteristic
strength. If necessary, compute the estimate of the mean
strength. If all failures originate from a single flaw distribu-
tion, compute an unbiased estimate of the Weibull modulus
and compute confidence bounds for both the estimated
Weibull modulus and the estimated Weibull characteristic
strength. Prepare a graphical representation of the failure
data along with a test report.

%
3

5. Significance and Use

5.1 Advanced ceramics usually display a linear stress-
strain behavior to failure. Lack of ductility combined with
flaws that have various sizes and orientations leads to scatter
in failure strength. Strength is not a deterministic property
but instead reflects an intrinsic fracture toughness and a
distribution (size and orientation) of flaws present in the
material. This practice is applicable to brittle monolithic
ceramics that fail as a result of catastrophic propagation of
flaws present in the material. This practice is also applicable
to composite ceramics that do not exhibit any appreciable
bilinear or nonlinear deformation behavior. In addition, the
composite must contain a sufficient quantity of uniformly
distributed fibers such that the material is effectively homo-
geneous. Whisker-toughened ceramic composites may be
representative of this type of material.
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5.2 Two- and three-parameter formulations exist for the
Weibull distribution. This practice is restricted to the two-
parameter formulation. An objective of this practice is to
obtain point estimates of the unknown parameters by using
well-defined functions that incorporate the failure data.
These functions are referred to as estimators. It is desirable
that an estimator be consistent and efficient. In addition, the
estimator should produce unique, unbiased estimates of the
distribution parameters (6). Different types of estimators
exist, including moment estimators, least-squares estimators,
and maximum likelihood estimators. This practice details
the use of maximum likelihood estimators due to the
efficiency and the ease of application when censored failure
populations are encountered.

5.3 Tensile and flexural specimens are the most com-
monly used test configurations for advanced ceramics. The
observed strength values are dependent on specimen size and
geometry. Parameter estimates can be computed for a given
specimen geometry (1, a,), but it is suggested that the
parameter estimates be transformed and reported as mate-
rial-specific parameters (11, ao). In addition, different flaw
distributions (for example, failures due to inclusions or
machining damage) may be observed, and each will have its
own strength distribution parameters. The procedure for
transforming parameter estimates for typical specimen ge-
ometries and flaw distributions is outlined in 7.6.

5.4 Many factors affect the estimates of the distribution
parameters. The total number of test specimens plays a
significant role. Initially, the uncertainty associated with
parameter estimates decreases significantly as the number of
test specimens increases. However, a point of diminishing
returns is reached when the cost of performing additional
strength tests may not be justified. This suggests that a
practical number of strength tests should be performed to
obtain a desired level of confidence associated with a
parameter estimate. The number of specimens needed de-
pends on the precision required in the resulting parameter
estimate. Details relating to the computation of confidence
bounds (directly related to the precision of the estimate) are
presented in 8.3 and 8.4.

6. Outlying Observations

6.1 Before computing the parameter estimates, the data
should be screened for outlying observations (outliers). An
outlying observation is one that deviates significantly from
other observations in the sample. It should be understood
that an apparent outlying observation may be an extreme
manifestation of the variability of the strength of an ad-
vanced ceramic. If this is the case, the data point should be
retained and treated as any other observation in the failure
sample. However, the outlying observation may be the result
of a gross deviation from prescribed experimental procedure
or an error in calculating or recording the numerical value of
the data point in question. When the experimentalist is
clearly aware that a gross deviation from the prescribed
experimental procedure has occurred, the outlying observa-
tion may be discarded, unless the observation can be
corrected in a rational manner. The procedures for dealing
with outlying observations are detailed in Practice E 178.
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7. Maximum Likelihood Parameter Estimators for Com-
peting Flaw Distributions

7.1 This practice outlines the application of parameter
estimation methods based on the maximum likelihood
technique. This technique has certain advantages, especially
when parameters must be determined from censored failure
populations. When a sample of test specimens yields two or
more distinct flaw distributions, the sample is said to contain
censored data, and the associated methods for censored data
must be employed. The methods described in this practice
include censoring techniques that apply to multiple concur-
rent flaw distributions. However, the techniques for param-
eter estimation presented in this practice are not directly
applicable to data sets that contain exclusive or compound
multiple flaw distributions (7). The parameter estimates
obtained using the maximum likelihood technique are
unique (for a two-parameter Weibull distribution), and as
the size of the sample increases, the estimates statistically
approach the true values of the population.

7.2 This practice allows failure to be controlled by mul-
tiple flaw distributions. Advanced ceramics typically contain
two or more active flaw distributions each with an indepen-
dent set of parameter estimates. The censoring techniques
presented herein require positive confirmation of multiple
flaw distributions, which necessitates fractographic examina-
tion to characterize the fracture origin in each specimen.
Multiple flaw distributions may be further evidenced by
deviation from the linearity of the data from a single Weibull
distribution (for example, Fig. 1). However, since there are
many exceptions, observations of approximately linear be-
havior should not be considered sufficient reason to con-
clude that only a single flaw distribution is active.

72.1 For data sets with multiple active flaw distributions
where one flaw distribution (identified by fractographic
analysis) occurs in a small number of specimens, it is
sufficient to report the existence of this flaw distribution (and
the number of occurrences), but it is not necessary to
estimate Weibull parameters. Estimates of the Weibull
parameters for this flaw distribution would be potentially
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Note—The boxes refer to surface flaws; the circles refer to volume flaws.
FIG. 1 Example—Failure Data in Section 10.2
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biased with wide confidence bounds (neither of which could
be quantified through use of this practice). However, special
note should be made in the report if the occurrences of this
flaw distribution take place in the upper or lower tail of the
sample strength distribution.

7.3 The application of the censoring techniques presented
in this practice can be complicated by the presence of test
specimens that fail from extraneous flaws, fractures that
originate outside the effective gage section, and unidentified
fracture origins. If these complications arise, the strength
data from these specimens should generally not be discarded.
Strength data from specimens with fracture origins outside
the effective gage section (8), and specimens with fractures
that originate from extraneous flaws should be censored; and
the maximum likelihood methods presented in this practice
are applicable.

7.3.1 Specimens with unidentified fracture origins some-
times occur. It is imperative that the number of unidentified
fracture origins, and how they were classified, be stated in the
test report. This practice recognizes four options the experi-
mentalist can pursue when unidentified fracture origins are
encountered during fractographic examinations. The situa-
tion may arise where more than one option will be used
within a single data set. Specimens with unidentified fracture
origins can be:

7.3.1.1 Option a—Assigned a previously identified flaw
distribution using inferences based on all available
fractographic information,

7.3.12 Option b—Assigned the same flaw distribution as
that of the specimen closest in strength,

7.3.1.3 Option c—Assigned a new and as yet unspecified
flaw distribution, and

7.3.1.4 Option d—Be removed from the sample.

Note 1—The user is cautioned that the use of any of the options
outlined in 7.3.1 for the classification of specimens with unidentified
fracture origins may create a consistent bias error in the parameter
estimates. In addition, the magnitude of the bias cannot be determined
by the methods presented in 8.2

7.3.2 A discussion of the appropriateness of each option
in 7.3.1 is given in Appendix X2. If the strength data and the
resulting parameter estimates are used for component design,
the engineer must consult with the fractographer before and
after performing the fractographic examination. Consider-
able judgement may be needed to identify the correct option.
Whenever partial fractographic information is available,
7.3.1.1 is strongly recommended, especially if the data are
used for component design. Conversely, 7.3.1.4 is not
recommended by this practice unless there is overwhelming
justification,

7.4 The likelihood function for the two-parameter
Weibull distribution of a censored sample is defined by the
following equation (9):

-1

{8 R D 8 A6

This expression is applied to a sample where two or more
active concurrent flaw distributions have been identified
from fractographic inspection. For the purpose of the discus-
sion here, the different distributions will be identified as flaw
Types A, B, C, etc. When Eq 12 is used to estimate the
parameters associated with the A flaw distribution, then r is

(12)
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the number of specimens where Type A flaws were found at
the fracture origin, and i is the associated index in the first
summation. The second summation is carried out for all
other specimens not failing from type A flaws (that is, Type
B flaws, Type C flaws, etc.). Therefore, the sum is carried out
from (j = r + 1) to N (the total number of specimens) where
j is the index in the second summation. Accordingly, ¢; and
o; are the maximum stress in the ith and jth test specimen at
failure. The parameter estimates (the Weibull modulus 1
and the characteristic strength &,) are determined by taking
the partial derivatives of the logarithm of the likelihood
function with respect to 71 and &, and equating the resulting
expressions to zero. Note that g, is a function of specimen
geometry and the estimate of the Weibull modulus. Expres-
sions that relate &, to the Weibull material scale parameter g,
for typical specimen geometries are given in 7.6. Finally, the
likelihood function for the two-parameter Weibull distribu-
tion for a single-flaw population is defined by the following
My fo;
o) =
imi VW00

equation:
U‘
)
where r was taken equal to N in Eq 12.
7.5 The system of equations obtained by maximizing the
log likelihood function for a censored sample is given by the
following equations (10):

=1
Z=q ( (13)

% (e)"In(e)

4 1
i=1 == 3 In(¢) —==0 (14)
g ()" =1 m
fm} ,J
and - -A
[}/ o o5
Gy = [(g (-r.~)"'> ;] (15)
foa |
where:

r = number of failed specimens from a particular group of a
censored sample.

When a sample does not require censoring, r is replaced by N
in Eqs 14 and 15. Equation 14 is solved first for 7.
Subsequently &, is computed from Eq 15. Obtaining a
closed-form solution of Eq 14 for ri1 is not possible. This
expression must be solved numerically. When there are
multiple active flaw populations, Eqs 14 and 15 must be
solved for each flaw population. A computer algorithm
(entitted MAXL) that calculates the root of Eq 14 is
presented as a convenience in Appendix X1.

7.6 The numerical procedure in accordance with 7.5
yields parameter estimates of the Weibull modulus {m) and
the characteristic strength (a,). Since the characteristic
strength also reflects specimen geometry and stress gradients,
this standard suggests reporting the estimated Weibull mate-
rial scale parameter g,

7.6.1 The following equation defines the relationship
between the parameters for tensile specimens:

(:’o)v = (V)l/(’h)y(&a)v

where V is the volume of the uniform gage section of: the
tensile specimen, and the fracture origins are spatially

(16)
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distributed strictly within this volume. The gage section ofa
tensile specimen is defined herein as the central region of the
test specimen with the smallest constant cross-sectional area.
However, the experimentalist may include transition regions
and the shank regions of the specimen if the volume (or area)
integration defined by Eq 10 is analyzed properly. This
procedure is discussed in 7.6.3. For tensile specimens in
which fracture origins are spatially distributed strictly at the
surface of the specimens tested, the following equation
applies:

(a'o)..q = (A)l/('m‘(&a)A (17)

where 4 = surface area of the uniform gage section.

7.6.2 For flexural specimen geometries, the relationships
become more complex (11). The following relationship is
based on the geometry of a flexural specimen found in Fig. 2.
For fracture origins spatially distributed strictly within both
the volume of a flexural specimen and the outer load span,
the following equation applies:

L 1oy
Vv [(L_,,) (m), + l]
[/ = (0, ————————————————
(To)y = ( o)v{ S T 17 } (18)
where:
L; = length of the inner load span,
L, = length of the outer load span,
V = volume of the gage section defined by the following
expression:
VebdlL, (19
and:
b, d = dimensions identified in Fig. 2.
For fracture origins spatially distributed strictly at the surface
of a flexural specimen and within the outer load span, the
following equation applies:

5_‘ > 1 /{rit)a
J )<( L) (i), + 1)1
+b (20)

(m), +1 (m,+1

(50 = (3004 [Lo (

7.6.3 Test specimens other than tensile and flexure speci-
mens may be utilized. Relationships between the estimate of
the Weibull characteristic strength and the Weibull material
scale parameter for any specimen configuration can be
derived by equating the expressions defined by Eqs 8 and 10
with the modifications that follow. Begin by replacing ¢ (an
applied uniaxial tensile stress) in Eq 8 with o, Which is
defined as the maximum tensile stress within the test
specimen of interest. Thus:

ety ——

© ©

[ Test specimen J [ l:E
T o

|
I L ‘{
FIG. 2 Flexural Specimen Geometry

el (] o

Also perform the integration given in Eq 10 such that

% max
P/= 1 - exp[ -kV( o )"‘] 22)

where k is a dimensionless constant that accounts for
specimen geometry and stress gradients. Note that in general,
k is a function of the estimated Weibull modulus m, and is
always less than or equal to unity. The product (k¥) is often
referred to as the effective volume (with the designation V).
The effective volume can be interpreted as the size of an
equivalent uniaxial tensile specimen that has the same risk of
rupture as the test specimen or component. As the term
implies, the product represents the volume of material
subject to a uniform uniaxial tensile stress (12). Setting Egs
21 and 22 equal to one another yields the following
expression:

(30);' = (kV)”('ﬁ)"(&o)V (23)

Thus, for an arbitrary test specimen, the experimentalist
cvaluates the integral identified in Eq 10 for the effective
volume (kV), and utilizes Eq 23 to obtain the estimated
Weibull material scale parameter ;. A similar procedure can
be adopted when fracture origins are spatially distributed at
the surface of the test specimen.

7.7 An objective of this practice is the consistent represen-
tation of strength data. To this end, the following procedure
is the recommended graphical representation of strength
data. Begin by ranking the strength data obtained from
laboratory testing in ascending order, and assign to each &
ranked probability of failure Paccording to the estimator a
follows:

i - 0.5 .
Pfo) =~ = Q4
where:
N = number of specimens, and
i = ith datum.

Compute the natural logarithm of the ith failure stress, anc
the natural logarithm of the natural logarithm of [1/(1 — Py
(that is, the double logarithm of the quantity in brackets)
where P, is associated with the ith failure stress.

7.8 Create a graph representing the data as shown in Fig
1. Plot In{In[1/(1 — P/)]} as the ordinate, and In(s) as th
abscissa. A typical ordinate scale assumes values from +2 t
—6. This approximately corresponds to a range in probabilit
of failure from 0.25 to 99.9 %. The ordinate axis must b
labeled as probability of failure P as depicted in Fig. 1
Similarly, the abscissa must be labeled as failure stres
(flexural, tensile, etc.), preferably using units of megapascal
or gigapascals.

7.9 Included on the plot should be a line (two or mor
lines for concurrent flaw distributions) whose position
fixed by the estimates of the Weibull parameters. The line i
defined by the following mathematical equation:

Pp= 1~ cxp[ - (&i)ﬁ'] (2:
[}

The slope of the line, which is the estimate of the Weibu
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TEST REPORT
Weibull Parameters Calculated Using Maximum Likelihood Estimators
Material:
Test method:
Specimen size:
Specimens from:
- Single billet T
Muttiple billets O
Component(s) O
Separately made O
Total number of specimens:
FLAW POPULATION 1 Complete the following and report the numbers below
Number of specimens: @ if only one flaw population exists:
Flaw identity: .
al dist. O Volume s:r:ect m for b::s (': :'t‘ﬂ; ; )-
O Surface u \
a
. _ 90% Confidence bounds: REPORT
Esﬁm:tes. ] \ (Note: Use M below, not r?|u.) THESE
0’. =
&o= (Weibull scale parameter) 3 m (Table 2) :
do.05 = mu‘,p.r = mlqo 05™
FLAW POPULATION 2 !
Number of specimens:
Spatial dist.g \sI:l::; to.0s = a., upper = o. exp(-tg o5/1 ) =
O toos = ojower = Fo 0XPi-to g5/ =
Estimates:
M
A
Tg =
Gg=_____ (Weibull scale parameter)
FLAW POPULATION 3
Number of specimens:
Flaw identity:
Spatial dist. [] Volume
O Surface
a
Estimatos:
m =
0’. =
°'0 =_______ (Weibull scale parameter)

How were unidentified specimens treated?
Number of unidentified specimens:

01 Identity estimated by extrapolating fractography

O identity assigned arbitrarily to be same as the nearest
strength datum

O Assumed to belong to a distinct population

O Discarded as random events

FIG. 3 Sample Test Report
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modulus 7, should be identified, as shown in Fig. 1. The
estimate of the characteristic strength &, should also be
identified. This corresponds to a P,of 63.2 %, or a value of
zero for In{In[1/1(1 — Pp]}. A test report (that is, a data
sheet) that details the type of material characterized, the test
procedure (preferably designating an appropriate standard),
the number of failed specimens, the flaw type, the maximum
likelihood estimates of the Weibull parameters, the unbiasing
factor, and the information that allows the construction of
90 % confidence bounds is depicted in Fig. 3. This data sheet
should accompany the graph to provide a complete represen-
tation of the failure data. Insert a column on the graph (in
any convenient location), or alternatively provide a separate
table that identifies the individual strength values in as-
cending order as shown in Fig. 4. This will permit other users
to perform alternative analyses (for example, future imple-
mentations of bias correction or confidence bounds, or both,
on multiple flaw populations). In addition, the experimen-
talist should include a separate sketch of the specimen
geometry that includes all pertinent dimensions. An estimate
of mean strength can also be depicted in the graph. The
estimate of mean strength fi is calculated by using the
arithmetic mean as the estimator in the following equation:

iy

i
Note that this estimate of the mean strength is not appro-
priate for samples with multiple failure populations.

8. Unbiasing Factors and Confidence Bounds

8.1 Paragraphs 8.2 through 8.4 outline methods to correct
for statistical bias errors in the estimated Weibull parameters
and outlines methods to calculate confidence bounds. The
procedures described herein to correct for statistical bias
errors and to compute confidence bounds are appropriate
only for data sets where all failures originate from a single
flaw population (that is, an uncensored sample). Procedures
for bias correction and confidence bounds in the presence of
multiple active flaw populations are not well developed at

Flaw key
99 o aggoments
90 |- 1 Inclusion
80 LG Large grein
[ MD Machine damags
P Pore Stress Flaw G6tress Flaw
P8  Porous seam a
g O Ph oo L
n'.-' ? Uncertain 585 497
s 20 72 496
g — Unbiased, 568 493
2 A 854 ? arr
E 10+ {m), = 10.3 853 LG 4
-— A 553 472
; s (6g)=533MPa O Pk
= 543 448
- 532 433
2 sz e
g 524 43
a 1= 518 a
8518 "
st Mean: 508
“ 6. Dev: 53
] ] 1 ] ]
300 400 500 600 700 800 900

Fracture stress, o, MPa

Note—The boxes rafer 1o surface flaws; the circles refer 1o volume flaws.
FIG. 4 Example—Failure Data with Fractography Information
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this time. Note that the statistical bias associated with the
estimator o, is minimal (<0.3 % for 20 test specimeuns, as
opposed to =7 % bias for /i with the same number of
specimens). Therefore, this practice allows the assumption
that &, is an unbiased estimator of the true population
parameter. The parameter estimate of the Weibull modulus
(ri7) generally exhibits statistical bias. The amount of statis-
tical bias depends on the number of specimens in the sample.
An unbiased estimate of m shall be obtained by multiplying
#i1 by unbiasing factors (13). This procedure is discussed in
the following sections. Statistical bias associated with the
maximum likelihood estimators presented in this practice
can be reduced by increasing the sample size.

8.2 An unbiased estimator produces nearly zero statistical
bias between the value of the true parameter and the point
estimate. The amount of deviation can be quantified either
as a percent difference or with unbiasing factors. In keeping
with the accepted practice in the open literature, this practice
quantifies statistical bias through the use of unbiasing
factors, denoted here as UF. Depending on the number of
specimens in a given sample, the point estimate of the
Weibull modulus 77 may exhibit significant statistical bias.
An unbiased estimate of the Weibull modulus (denoted as
rity) is obtained by multiplying the biased estimate with an
appropriate unbiasing factor. Unbiasing factors for ri1 are
listed in Table 1. The example in 11.3 demonstrates the use
of Table 1 in correcting a biased estimate of the Weibull
modulus. As a final note, this procedure is not appropriate
for censored samples. The theoretical approach was devel-
oped for uncensored samples where r = N. -

8.3 Confidence bounds quantify the uncertainty associ-
ated with a point estimate of a population parameter. The
size of the confidence bounds for maximum likelihood
estimates of both Weibull parameters will diminish with
increasing sample size. The values used to construct confi-
dence bounds are based on percentile distributions obtained
by Monte Carlo simulation. For example, the 90 % confi-

TABLE 1 Unbiasing Factors for the Maximum Likelihood
Estimate of the Weibull Modulus

Number of Unbiasing Factor, Number of Unbiasing Factor,
Specimens, N UF Specimens, N UF .

5 0.700 42 0.968

6 0.752 44 0.970

7 0.792 46 0.971

8 0.820 48 0.972

9 0.842 50 0.973
10 0.859 52 0.974
" 0.872 54 0.975
12 0.883 56 - 0976
13 0.893 58 0.977
14 0.901 60 0.978
15 0.908 62 0.979
16 0.914 64 0.980
18 0.923 66 0.980
20 0.931 68 0.981
22 0.938 70 0.981
24 0.943 72 0.982
26 0.947 74 0.982
28 0.951 76 0.983
30 0.955 78 0.983
32 0.958 80 -0.984
34 0.960 85 0.985
36 0.962 90 0.986
38 0.964 100 0.987
40 0.966 120 0.990
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dence bound on the Weibull modulus is obtained from the 5
and 95 percentile distributions of the ratio of 7 to the true
population value m. For the point estimate of the Weibull
modulus, the normalized values (#1/m) necessary to con-
struct the 90 % confidence bounds are listed in Table 2. The
example in 10.3 demonstrates the use of Table 2 in con-
structing the upper and lower bounds in 7. Note that the
statistical biased estimate of the Weibull modulus must be
used here. Again, this procedure is not appropriate for
censored statistics. -

8.4 Confidence bounds can be constructed for the esti-
mated Weibull characteristic strength. However, the percen-
tile distributions needed to construct the bounds do not
involve the same normalized ratios or the same tables as
those used for the Weibull modulus. Define the function as
follows:

t = 11 In(3,/0,) @n
The 90 % confidence bound on the characteristic strength is
obtained from the 5 and 95 percentile distributions of ¢. For
the point estimate of the characteristic strength, these percen-
tile distributions are listed in Table 3. The example in 10.3
demonstrates the use of Table 3 in constructing upper and
lower bounds on &,. Note that the biased estimate of the
Weibull modulus must be used here. Again, this procedure is
not appropriate for censored statistics. Note that Eq 27 is not
applicable for developing confidence bounds on &, therefore
the confidence bounds on &, should not be converted
through the use of Eqs 8 and 10.

9. Fractography

9.1 Fractographic examination of each failed specimen is
highly recommended in order to characterize the fracture
origins. The strength of advanced ceramics is often limited
by discrete fracture origins that may be intrinsic or extrinsic

TABLE 2 Normalized Upper and Lower Bounds on the Maximum
Likelihood Estimate of the Weibull Modulus—90 % Confidence

interval
Number of Number of

Specimens, N Go.08 Qoss Specimens, N Go.0s Go.es
5 0.683 2.779 42 0.842 1.265
6 0.697 2.436 44 0.845 1.256
7 0.709 2.183 46 0.847 1.249
8 0.720 2.015 48 0.850 1.242
9 0.729 1.896 50 0.852 1.235
10 0.738 1.807 52 0.854 1.229
1 0.745 1.738 54 0.857 1.224
12 0.752 1.682 56 0.859 1.218
13 0.759 1.636 58 0.861 1.213
14 0.764 1.597 60 0.863 1.208
15 0.770 1.564 62 0.864 1.204
16 0.775 1.535 64 0.866 1.200
17 0.779 1.510 66 0.868 1.196
18 0.784 1.487 68 0.869 1.192
19 0.788 1.467 70 0.871 1.188
20 0.791 1.449 72 0.872 1.185
22 0.798 1.418 74 0.874 1.182
24 0.805 1.392 76 0.875 1.179
26 0.810 1.370 78 0.876 1.176
28 0.815 1.351 80 0.878 1173
30 0.820 1.334 85 0.881 1.166
32 0.824 1.319 90 0.883 1.160
34 0.828 1.306 95 0.886 1.185
36 0.832 1.294 100 0.888 1.150
38 0.835 1.283 110 0.893 1.141
40 0.839 1.273 120 0.897 1.133
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FIG. 5 Example—Fallure Data in 10.1
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to the material. Porosity, agglomerates, inclusions, and
atypical large grains would be considered intrinsic fracture
origins. Extrinsic fracture origins are typically on the surface
of the specimen and are the result of contact stresses, impact
events, or adverse environment. When the means are avail-
able to the experimentalist, fractographic methods should be
used to locate, identify, and classify the strength limiting
fracture origin causing catastrophic failure in an advanced
ceramic test specimen. Moreover, for the purpose of param-
eter estimation, each classification of fracture origin must be
identified as a surface fracture origin or a volume fracture
origin in order to use the expressions given in 7.6. Thus,
there may exist several classifications of fracture origins
within the volume (or surface area) of the test specimens ina
sample. It should be clearly indicated on the test report (Fig.
3) if a fractographic analysis is not performed. Fractography
can be a very subjective analytical method, and the experi-
mentalist is urged to follow the guidelines established in
MIL-HDBK-790 concerning fractography.

9.2 Optional—Perform a fractographic analysis and label
each datum with a symbol identifying the type of fracture
origin. This can either be a word, an abbreviation, or a
different symbol for each type of fracture origin, as depicted
in Fig. 4. For example, the abbreviations in LG in Fig. 4
represents failure due to a large grain. .

10. Examples

10.1 For the first example, consider the failure data in
Table 4. The data represent four-point (Y4 point) flexural
specimens fabricated from HIP’ed (hot isostatically Qressed)
silicon carbide (14). The solution of Eq 14 requires an
iterative numerical scheme. Using the computer algonEhm
MAXL (see Appendix X1), a parameter estimate of m =
6.48 was obtained. (Note that an unbiased value of m= 6_.38
is shown in Fig. 5; See 10.3 and Eq 31.) Subsequent solution
of Eq 15 yields a value of 5, = 556 MPa. These values for the
Weibull parameters were generated by assuming a unimodal
failure sample with no censoring (that is, r = N). Figure 5
depicts the individual failure data and a curve based on the
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TABLE 3 Normalized Upper and Lower Bounds on the Function
t—90 % Confidence Interval

TABLE 4 Unimodal Failure Stress Data for Hipped (Hot
Isostatically Pressed) Silicon Carbide—Example 1

Number of ¢ ¢ Number of ¢ ( Specimen number, Strength, o, Specimen number, Strength, a,,
Specimens, N .03 0.98 Specimens, N 0.05 088 N MPa N MPa
5 ~1.247 1107 42 -0.280 0.278 1 281 41 516
6 -1.007 0939 44 -0273  0.27 2 291 42 520
7 -0874 0829 46 -0266 0.264 3 358 43 528
8 -0.784  0.751 48 -0260 0.258 4 385 4“4 531
9 0717 0.691 50 —0254 0.253 5 389 45 531
10 -0.665 0.644 52 —0.249 0247 6 an 46 546
1 -0622 0.605 54 -0.244  0.243 7 392 47 549
12 ~0.587 0572 56 0239 0.238 8 403 48 553
13 -0.557 0.544 58 —0234 0233 9 412 49 560
14 -0532 0520 60 —0230 0.229 10 413 50 562
15 -0509  0.499 62 -0226 0225 1 414 51 563
16 -0.489  0.480 64 -0222 0221 12 418 52 566
17 -0.471  0.463 66 -0218 0218 13 418 53 566
18 ~0.455  0.447 68 0215  0.214 14 427 54 570
19 —0441 0433 70 -0211 021 15 438 55 573
20 0428 0.421 72 -0208  0.208 16 440 56 575
22 ~0.404 0398 74 —0205 0.205 17 441 57 576
24 -0.384 0379 76 —0202 0.202 18 442 58 580
26 -0.367 0362 78 -0.199  0.199 19 444 59 583
28 0352  0.347 80 0187  0.197 20 445 60 588
30 -0338 0334 85 ~0.190  0.190 21 446 61 589
22 -0326 0323 90 —0.184  0.185 22 452 62 591
34 -0315 0312 95 -0.179  0.179 23 452 63 591
36 -0.305 0.302 100 . =074  0.175 24 453 64 593
38 -0296 0293 110 -0.165  0.166 25 470 65 599
40 -0.288  0.285 120 -0.158  0.159 26 474 66 600
27 476 67 610
‘ 28 476 68 613
estimated values of the parameters. Next, assuming that the 29 479 69 620
h . e . . 30 484 70 820
failure origins were surface distributed and then inserting the 31 485 7 622
estimated value of 71 and &, into Eq 20 along with the 32 486 72 622
specimen geometry (that is, L, = 40 mm, L, = 20 mm, d = 333 :gg_ 73 640
3.5 mm, and b = 4.5 mm) yields (5o), = 360 MPa-(m)>>®. % - L s
Note that (o), has units of stress:(area)'/”; thus, 0.309 = 3% 496 76 660
(2./6.48). Alternative, if one were to assume that the failure ¥ 506 L 664
origins were volume distributed, then the solution of Eq 18 » n L b
yields (a,), = 37.0 MPa-(m)>#53, Note that (o), has units of © 514 80 725

stress - (volume)!/”; thus, 0.463 = (3./6.48). The different
values obtained from assuming surface and volume fracture
origins underscore the necessity of conducting a fracto-
graphic analysis.

10.2 Next, consider a sample that exhibits multiple active
flaw distributions (see Table 5). Here each flexural test
specimen was subjected to a fractographic analysis. The
failure origin was identified as either a volume or a surface
fracture origin, and parameter estimates were obtained by
using Eqs 14 and 15. For the analysis with volume fracture
origins, 7 = 13, and the calculations yielded values of (1), =
6.79 and (5,), = 876 MPa. For the analysis with surface
fracture origins, 7 = 66, and the calculations yielded values of
(th), = 21.0 and (5,), = 693 MPa. For the most part, the data
as plotted in Fig. 1 fall near the solid curve, which represents
the combined probability of failure as follows (15):

Pr=1=[1 = (Pl = (P (28)
where (P)), is calculated by using the following equation:
a \w¥
epm1 - o] - (5" @)

and (P)), is calculated by using the following equation:

o\
(Pha=1- cxp[ - (G,T) ] (30)

The curve obtained from Eq 28 asymptotically approaches
the intersecting straight lines that are defined by the esti-
mated parameters and calculated from Eqs 29 and 30.
Inserting the estimated Weibull parameters (obtained from
the analysis for volume fracture origins) into Eq 18 along
with the specimen geometry (L, = 40 mm, L, = 20 mm, d =
3.5 mm, and b = 4.5 mm) yields (o), = 65.6 MPa-(m)%*2,
Inserting the estimated Weibull parameters (obtained from
the analysis for surface fracture origins) into Eq 20 yields
(50), = 446 MPa-(m)*%.

10.2.1 It must be noted in this example that fractography
apparently indicated that all volume failures were initiated
from a single distribution of volume flaws, and that all
surface failures were initiated from a single distribution of
surface flaws. Often, fractography will indicate more com-
plex situations such as two independent distributions of
volume flaws (for example, inclusions of foreign material
and large voids) in addition to a distribution of surface flaws.
Analysis of this type of sample would be very similar to the

- analysis discussed in 10.1, except that Eqs 14 and 15 would

be used three times instead of twice, and the resulting figure
would include three straight lines labelled accordingly.

10.3 As an example of computing unbiased estimates of
the Weibull modulus, and bounds on both the Weibul
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TABLE 5 Bimodal Failure Stress Data—Example 2
Number of Number of

Strength, Fracture Strength, Fracture
Specmens.  “'MPa  Origin type4 Specinens. Mpa OriginA

1 416 v 41 671 )

2 458 S 42 672 S

3 520 \ 43 672 S

4 527 v 44 674 s

5 546 S 45 677 S

6 561 A 46 677 S

7 572 S a 678 8

8 595 \' 48 680 S

9 604 S 49 683 )
10 604 1) 50 684 S
11 609 v 51 686 S
12 612 S 52 687 S
13 614 S 53 687 S
14 621 \' 54 691 S
15 622 S 55 694 s
16 622 S 56 695 S
17 622 v 57 700 S
18 622 s 58 703 S
19 625 S 59 703 S
20 626 v 60 703 S
21 631 5 61 703 [
22 640 S 62 704 S
23 643 v 63 704 S
24 649 3 64 706 s
25 650 s 65 - 710 s
26 652 v 66 713 ]
27 655 S 67 716 S
28 657 S 68 716 s
29 657 v 69 716 ]
30 660 S 70 716 s
31 660 S 7 716 S
32 662 V- 72 717 ]
33 662 S 73 725 s
34 662 S 74 725 S
35 664 S 75 725 S
36 664 S 76 726 S
a7 664 3 77 727 s
38 666 S 78 729 S
39 669 S 79 732 S
40 6871 S .. . v

A Volume fracture origin, V; surface flaw origin, S

modulus and the Weibull characteristic strength, consider

38l

the unimodal failure sample presented in 10.1. The sample
contained 80 specimens and the biased estimate of the
Weibull modulus was determined to be iz = 6.48. The
unbiasing factor corresponding to this sample size is UF =
0.984, which is obtained from Table 1. Thus, the unbiased
estimate of the Weibull modulus is given as follows:
i1y = i X UF
= (6.48)X0.984)
= 6.38

The upper bound on ri1 for this example is as follows:
Mypper = M1/d0.05
= 6.48/0.878
= 7.38

where gy o5 is obtained from Table 2 for a sample size of 80
failed specimens. The lower bound is as follows:
Myower = MM/do.95
= 6.48/1.173
= 5.52

where gqs is obtained from Table 2. Similarly, the upper
bound on g, is as follows:
- (39)apper = 7o EXP(=lg.0s/™)
= (556)exp(0.197/6.48)
= 573 MPa

where £ qs is obtained from Table 3 for a sample size of 80
failed specimens. The lower bound on 7, is as follows:

(Fohower = Ts exp(—to 9s/™)
= (556)exp(—0.197/6.48)
= 539 MPa

where 1,45 is also obtained from Table 3.

@3n
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(33

(34

(35

11. Keywords

11.1 advanced ceramics; censored data; confidence
bounds; fractography; fracture origin; maximum likelihood;
strength; unbiasing factors; Weibull characteristic strength;
Weibull modulus; Weibull scale parameter; Weibull statistics
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APPENDIX

(Nonmandatory Information)

X1. COMPUTER ALGORITHM MAXL

X1.1 Using maximum likelihood estimators to compute
estimates of the Weibull parameters requires solving Eqgs 14
and 15 for 71 and &,, respectively. The solution of Eq 15 is
straightforward once the estimate of the Weibull modulus m
is obtained from Eq 14. Obtaining the root of Eq 14 requires
an iterative numerical solution. In this appendix, the theo-
retical approach is presented for the numerical solution of
these equations, along with the details of a computer
algorithm (optional) that can be used to solve Eqs 14 and 15.
A flow chart of the algorithm, which is entitled MAXL, is
presented in Fig. X1.1.

X1.2 The MAXL algorithm employs a Newton-Raphson
technique (16) to find the root of Eq 14. The root of Eq 14
represents a biased estimate of the Weibull modulus. Solu-
tion of Eq 15, which depends on the biased value of m, is
effectively an unbiased estimate of the characteristic
strength. The reader is cautioned not to correct m for bias
prior to computing the characteristic strength. This would
yield an incorrect value of &,. This approach expands Eq 14
in a Taylor series about ay;

Sy = flig) + (rh = mQ)Lf (7ig))

+ f———(m ; moy]f"(n‘to) +...

(X1.1)

Input Mg, €
failure data !

!

Calculate roots
ofeq 14

1
|fh | < |1imy)] g =

Yes |  No

Nol 1 |tmpl <e [fhy] <« p— No

Yes ‘ Yes

Evalute 3,

FIG. X1.1 MAXL Flow Chart

where f{r1) represents the left-hand side of Eq 14, and 7, is
not a root of f{r71) but is reasonably close. Taking:

A = m — (X1.2)
and setting Eq X1.1 equal to zero, then:

A
0 = flrig) + (Ar)(Sf"(ring)] + [‘(-zi)]]/*(’ﬁo) +... (X13)

If the Taylor series expansion is truncated after the first three
terms, the resulting expression is quadratic in As#. The roots
of the quadratic form of Eq X1.3 are as follows:

. f" () f ()2 HWNES
Ay = ———|t|(——) = 2( = X1.4
w={ren) = (Fem) 2 (o)) 09
After obtaining A, and knowing ri1g, Eq X1.2 is then
solved for two values of 71 that represent improved (better
than i) estimates of the roots of f{ri), thus
s, = g + At (X1.5)
and
_ ';lb = ’ﬁo + A';Ib (Xl.6)
Eq 14 is evaluated with both values of ri, and the quantity
that yields a smaller functional value is accepted as the
updated estimate. This updated value of 71 replaces r7, in Eq
X1.4, and the next iteration is performed. The iterative
procedure is terminated when the functional evaluation of

Eq 14 becomes less than some predetermined tolerance e. '
X1.3 The following variable name list is provided as a

- convenience for interpreting the source code of the algorithm

MAXL:

DF, DDF—first and second derivatives with respect to of Eq 14.

EPS—predetermined convergence criterion.

F—function defined in Eq 14.

NLIM—maximum numbers of iterations allowed in determining
the root of Eq X1.3.

NSUSP—number of suspended (or censored) data (<NT).

NT—number of failure stresses.

ST—failure stress; an argument passed to MAXL as input.

STNORM—the largest failure stress; used to normalize all failure
stresses to prevent computational overflows.

MO—updated value of .

MA, MB—uvalues of the roots 71, and ri,,.

WCS—estimated Weibull characteristic strength.

WMT—maximum likelihood estimate of the Weibull modulus.

X1.4 A listing of the FORTRAN source code of the
algorithm MAXL is given in Fig. X1.2.
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PROGRAM MAXL

THIS PROGRAM CALCULATES TWO PARAMETER MAX IMUM
LIKELIHOOD ESTIMATES FROM FAILURE DATA WITH AN
ASSUNED UNDERLYING WEIBULL DISTRIBUTION. THE
ALGORITHM USES A NONLINEAR NEWTON-RAPHSON METHOO,
AND ACCOMODATES CENSORED DATA.

REFERENCES: "ADYANCED CALCULUS FOR APPLICATIONS®
by HILDEBRAND
PRENTICE-HALL, INC.; 1962

“APPLIED LIFE DATA ANALYSIS®
by NELSON
WILEY & SONS INC.: 1982

PO S S T R S T N R
PP N L A

»
»

e letalztatslataksXaXakatalatatakakalsl

IMPLICIT REAL *B(A-H,0-1)

DOUBLE PRECISION $T(1000),5T1(1000)

DOUBLE PRECISION MO, MA, MB, MI

COMMON /DATA/ NFAIL, SUM1, NT, ST, ZERO, ONE
1ERO = 0.00

ONE = 1,00

T™WO = 2.00

EPS = 5.00-10

NLIM = 500

M0 = 10.08651279857

--- READ THE FAILURE DATA USING FREE FORMATS
FILE CONTAINING FAILURE DATA IS ALLOCATED TO UNIT 8

2 XaXalal

00 10 [ = 1,1000
ST(1) = ZERO —
STI(1) = ZERD
10 CONTINUE -
STNORM = ZERO
READ(8,*) NT
READ(8,*) NSUSP
NFAIL = NT - NSUSP
00 20 [ = 1,NT
READ(8,*) ST(1)
STNORM = DMAX1({STNORM,ST(I))
20 CONTINUE

C
€ --- NORMALIZE FATLURE DATA WITH LARGEST VALUE

DO 30 1 = I,NT
ST{I) = ST(1)/STNORM
30 CONTINVE

SUML = ZERO
DO 40 I = 1,NFAIL
READ(8,*) ST1(1)
ST1{1) = ST1(I)/STHORM
C DUFF = DLOG(5T1(1))
SUMI = SUMI + DLOG(ST1(1))

FIG. X1.2 FORTRAN Source Code of the Algorithm MAXL

'
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40 CONTINUE
- THE FUNCTION F IS OEFINED BY EQ 14 OF ASTM STANDARD XXX

C
[+
C
€ --- EVALUATE F(MO) ANO THE ASSOCIATED SUMS WHICH ARE USED TO CALCULATE
C THE DERIVATIVES OF F WITH RESPECT TO M

C

C

C

CALL SUM (MO, SUMZ, SUM3, F)

CLLLLL&L&LLLL&LL&LLLLLL\&LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL&LLLLLLL

" NEWTON-RAPHSON ROOT SOLVER .

- USE TAYLOR SERIES SERIES EXPANSION (INCLUDING SECOND OERIVATIVES)
FOUND ON PAGE 362 OF “ADYANCED CALCULUS FOR APPLICATIONS BY
HILDEBRAND (FIRST EDITION, FIFTH PRINTING) TO DETERMINE THE ROOTS
OF THE FOLLOWING EQUATION, WHICH IS QUADRATIC IN DELTA M.

F(MO+DELTA M) = O
« F(M0) + DELTA M * F'(M0)
+ (DELTA M)**2 * F''(M0)/2

HERE MO IS THE CURRENT ESTIMATE OF M.
THE FORMULA YIELOS TWO ROCTS, DELTA MA ANOD DELTA M8,
MA AND M8 ARE THE UPDATED YALUES OF M, WHERE

F(MA) AND F(MB) ARE BOTH EVALUATED. THE ESTIMATE THAT PROOUCES THE
SMALLEST ABSGLUTE VALUE OF F IS CHOSEN FOR THE NEXT ITERATION.

IF THE QUADRATIC EQUATION DOES NOT HAVE REAL ROOTS, AN
APPROXIMATE SOLUTION FOUNG ON PAGE 363 OF HILDEBRAND IS USED, I.E.,

DELTA M = - tr(no)lr'(m)) *
1 + (DELTA M **2) ~ (F'*(M0)/2°F(M0))})

2
WHERE ON THE RIGHT-HAND-SIDE OF THE EQN, DELTA M 1S TAKEN AS THE
FIRST ORDER APPROXIMATION, DELTA M « -F(M0) /F* (M0)

r[lllllllillllllIIIlIlIIlIIllllllllllllllllllllll(IlIllllllllllllllllllll(LL

00 60 K = 1,NLIM

C
C
C
C
C
C
C
C
C
C
C
C
C
[
C
C
C
C M{A,8) = MO + DELTA M(A,B)
C
[
C
[
C
[
C
[
C
[
C
[
C
C
C
C
€ --- CALCULATE THE FIRST AND SECOND DERIVATIVES OF THE FUNCTION F
DSUM3 « ZERO
DOSUM3 « ZERO
00 50 [ = I,NT
DSUMI = DSUMI+DLOG ST(I))‘}ST(!))"NO'DLOG(ST(I))
DOSUM3 = OOSUM3 + (DLOG(ST 1)))**3*(ST(1))**M0
50 CONTINUE
DSUM2 = SUM3
DOSUM2 « DSUM3
DF = (SUMZ * DSUM3 - SUM3 * DSUMZ) / (SUM2**2) + ONE/(m0**2)

DOF = ((SUMZ * DOSUM3 - SUM3 * DOSUM2) /SUM2**2}
$ - (TWO * DSUM2.* (SUMZ * DSUM3 - SUM) * DSUM2)/SuM2**3)
$ - TWO/M0**3

FIG. X1.2 Continued
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RADICAL = (DF/DOF)**2 - TWO*F/DOF
IF (RADICAL .GE. ZERO) THEN

--= CALCULATE THE ROOTS OF THE QUADRATIC EQUATION
RADICAL = DSQRT(RADICAL)
MA = MO - EDF/MF + RADICAL
M8 = M0 - (OF/DOF) - RADICAL

--- CALCULATE F(MA), F(MB), AND THE ASSOCIATED SUMS

CALL SUM (MA, SUM2A, SUM3A, FA
CALL SUM (M8, SumzB, SuMlg, FB

--- SELECT THE BETTER ROOT BY COMPARING THE ABSOLUTE
VALUE OF THE FUNCTION F

IF (DABS(FA) .LE. DABS(FB)) THEN
MO = MA
F«FA
SUMZ = SUM2A
SUM3 = SUM3A
ELSE
MO = M8
F=FB

--- IF THE ROOTS ARE COMPLEX, USE THE APPROXIMATE SOLUTION
M1 = MO - (F/DF)*(ONE+F*ODF/(TWO*DF**2})
--« CALCULATE F{M1) AND ITS ASSOCIATED SUMS
CALL SUM (M1, SUM2, SUM3, F)
MO = M1
END IF
~-- CONVERGENCE CRITERION:
COMPARE THE ABSOLUTE VALUE OF THE FUNCTION F
WITH A PRESELECTED TOLERANCE

1F (DABS(F) .LE. EPS) GO TO 70
60 CONTINUE

we= MAXIMUM NO. OF ITERATIONS REACHED BEFORE SATISFACTORY VALUE OF M FOUND

WRITE(6,100) NLIM
60 TO 999

--- SATISFACTORY ESTIMATE OF WEIBULL MODULUS ATTAINED
70 WMT = MO
o= COMPUTE THE ESTIMATE OF THE WEIBULL CHARACTERISTIC STRENGTH (wCs)

RWMT = 1,0/WNT
FIG. X1.2 Continued
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WCS = ((SUMZ/NFAIL)**RWMT} *STNORM

WRITE(6,110) wWMT
WRITE(6,120) WCS

100 FORMAT(/,2X,'NO SOLUTION FOUND AFTER ',[4,' ITERATIONS OF THE

$NEWTON-RAPHSON METHOD',/)

110 FORMAT(/,2X,' THE ESTIMATED WEIBULL MODULUS = *,F8.3,/

120 FORMAT(/,2X,"
999 CONTINUE
sToP
END

,F8.3,/)
THE ESTIMATED CHARACTERISTIC STRENGTH = * FB.3,/)

SUBROUTINE SUM (M, SUM2, SUM3, F}

IMPLICIT REAL*8 (A-H, 0-I)

DOUBLE PRECISION ST(1000), M
COMMON /DATA/ NFAIL, SUM1, NT, ST, ZERO, ONE

SUM2 = ZERO
SUM3 « ZERO
00 10 I = 1,NT

SUMZ = SUMZ + t(sr(x))"n)
DLOG(ST(I)) * ((ST(I))**M))

SUM3 s SUM3 +
10 CONTINUE

F = (SUM3/SUM2) - (SUMI/NFAIL) - (ONE/M)

RETURN
END

FIG. X1.2 Continued

X2. TEST SPECIMENS WITH UNIDENTIFIED FRACTURE ORIGINS

X2.1 Paragraphs 7.3.1.1 to 7.3.1.4 describe four options,
(a) through (d), the experimentalist can utilize when uniden-
tified fracture origins are encountered during fractographic
examination. The following four subsections further define
the four options, and use examples to illustrate appropriate
and inappropriate situations for their use.

X2.1.1 Option (a) involves using all available fracto-
graphic information to subjectively assign a specimen with
an unidentified origin to a previously identified fracture
origin classification. Many specimens with unidentified frac-
ture origins have some fractographic information that was
judged to be insufficient for positive identification and
classification. (It should be noted that the degree of certainty
required for *“positive identification” of a fracture-initiating
flaw varies from one fractographer to another.) In such cases,
Option (a) allows the experimentalist the use of the incom-
plete fractographic information to assign the unidentified
fracture origin to a previously identified flaw classification.
This option is preferred when partial fractographic informa-
tion is available. As an example, consider a tensile specimen
where fractography was inconclusive. Fractographic mark-
ings may have indicated that the origin was located at or very
near the specimen surface, but the fracture-initiating flaw
could not be positively identified. Other specimens from the
sample were positively identified as failing from machining
flaws. It is recognized that machining damage is often
difficult to discern. Therefore, in this case it would be
appropriate to use Option (a) and infer that the origin is
machining damage. The test report (see 7.9 and Fig. 3) must
clearly indicate each specimen and where this (or any other)
option is used for classifying unidentified specimens. The
conclusion of machining damage in this example, however,
could be erroneous. For instance, the fracture-initiating flaw
may have been a “mainstream microstructural feature™ (17)
(which is also typically difficult to resolve and identify) that

% “Mainstream microstructural features™ or “ordinary microstructural features”™
are fracture origins that occur at features such as very large grains that are part of
the ordinary distribution of the microstructure, albeit at the large end of the
distribution of such features. These are distinguished from abnormal
microstructural features such as inclusions or grossly large pores.

happen to be located near the specimen surface. The
possibility of erroneous classification such as this are un-
avoidable in the absence of positive identification of fracture
origins.

X2.1.2 Option (b) involves assigning the unidentified
fracture origin to the fracture origin classification of the test
specimen closest in strength. The specimen closest in
strength must have a positively identified fracture origin (not
onc-assigned using Options (a) through (d)). As an example
of use of this option, consider a tensile specimen that
shattered upon failure such that the fracture origin was
damaged and lost, but fracture was clearly initiated from an
internal flaw. Other specimens from the sample included
positive identification of inclusions and large pores as two
active volume-distribution fracture origin classifications.
When the fracture strengths from the total data set were
ordered, the specimen closest in strength to the specimen
with the unidentified fracture origin was the specimen that
failed from an inclusion. Use of Option (b) for this test
specimen would then allow the unidentified origin to be
classified as an inclusion. Justification for Option (b) arises
from the tendency of concurrent (competing) flaw distribu-
tions to group together specimens with the same origin
classification when the test specimens are listed in order of
fracture strength. Therefore, the most likely fracture origin
classification of a random unidentified specimen is the
classification of the specimen closest in strength. The above
example can be modified slightly to illustrate a situation
where Option (b) would be inappropriate. If the fracture
origin classification of the specimen closest in strength was a
machining flaw, then Option (b) would lead to a conclusion
inconsistent with the fractographic observation that failure
occurred from an internal flaw. Fractographic evidence
should always supersede conclusions from Option (b).

X2.1.3 Option (c) assumes that the unidentified fracture
origins belong to a new, unclassified flaw type and treats

- these fracture origins as a separate flaw distribution in the
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censored data analysis. This may occur when the frac-
tographer cannot recognize the flaw type because features of
the flaw are particularly subtle and difficult to resolve. In
such cases, the fractographer may consistently fail to locate
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and classify the fracture origin. Examples of flaw types that
are difficult to identify include: machining damage, zones of
atypically high microporosity, and mainstream microstruc-
tural features. Option (c) may be appropriate if a set of
specimens with unidentified fracture origins have similar and
apparently related features. Unfortunately, there are many
situations where Option (c) is incorrect and where use of this
option could result in substantial errors in parameter esti-
mates. For instance, consider the case where several uniden-
tified specimens are concentrated in the upper tail (high
strength) of the strength distribution. These fracture origins
may belong to a classification that has been previously
identified, but the smaller flaws at the origins were harder to
locate, or possibly the origins were lost due to the greater
fragmentation associated with high-strength specimens. Use
of Option (c) to treat these high-strength specimens as a new
flaw classification would create a bias error of unknown
magnitude in the parameter estimates of the proper flaw
classification.

X2.1.4 Option (d) involves the removal of test specimens
with unidentified fracture origins from the sample (that is,
the strengths are removed from the list of observed
strengths). This option is rarely appropriate, and is not
recommended by this practice unless there is clear justifica-
tion. Option (d) is only valid when test specimens with
unidentified fracture origins are randomly distributed
through the full range of strengths and flaw classifications.
There are few plausible physical processes that create such a
random selection. An example where Option (d) is justified
is a data set of 50 specimens where the first 10 fractured
specimens (in order of testing) were misplaced or destroyed
after testing but prior to fractography. The unidentified
specimens were therefore created by a process that is
random. That is, the 10 strengths are expected to be
randomly distributed through the strength distribution of the
remaining 40, and the 10 origin classifications are expected
to be randomly distributed through the origin types of the
remaining 40. (In this example, Option (b) could also be
considered.) Option (d) is not appropriate where unidentified
fracture origins are a consequence of high-strength test
specimens shattering virulently such that the fragment with
the origin is lost. This situation occurs with more frequency
in the upper tail (high strength) of the strength distribution,
and thus the unidentified fracture origins would not occur at
random strengths.

X2.2 Paragraphs X2.2.1 to X2.2.6 expand on the proper
use and implementation of the four options described in
X2.1.

X2.2.1 When partial fractographic information is avail-

able, Option (a) is preferred and should be used to incorpo-
rate the information as completely as possible into the
assignment of fracture origin classification. Option (d)
should be used only in unusual situations where a random
process for creation of unidentified origins can be justified.

X2.2.2 Situations may arise where more than one option
will be used within a single data set. For instance, of five
specimens with unidentified origins, three might be classified
based on partial fractographic information using Option (a),
while the remaining two, which have no fractographic hints,
might then be classified using Option ).

X2.2.3 When specimens with unidentified fracture origins
are contained within a data set, the test report (see 7.9) must
include a full description of which specimens were unidenti-
fied, and which option or options were used to classify the
specimens.

X2.2.4 If the unidentified fracture origins occur fre-
quently in the lower tail of the strength distribution, then
caution and extra attention is warranted. Strength analyses
are typically extrapolated to lower strengths and lower
probabilities of failure than those observed in the data set.
Proper statistical evaluation and assignment of fracture
origin classifications near the lower-strength tail is therefore
particularly important because the low-strength distribution
typically dominates extrapolations of this type.

X2.2.5 When only a few fracture origins are unidentified,
effects of incorrect classification are minimal. When more
than S or 10 % of the origins are unidentified, substantial
statistical bias in estimates of parameters can result. When
used for design applications, proper choice of options from
X2.1 is critical and should be carefully justified in the test
report. In such design applications, it may be prudent to
carry out the analysis for more than one option to determine
the sensitivity to choice of an improper option. For instance,
in a group of 50 specimens with 10 unidentified origins (no
partial fractographic information), the analysis could be
conducted first using Option (b) then again using Option (c).
The results from the two analyses could then be used
individually to estimate the behavior of the designed compo-
nent. If a conservative prediction of component behavior is
warranted, the more conservative result of the two analyses
should be used.

X2.2.6 Finally, if most or all of the test specimens within
a sample contain unidentified fracture origins, then censored
data analysis according to this practice is not possible. The
strengths should be plotted on Weibull probability axes and,
if the data reveal a pronounced bend (concave upwards)
which is characteristic of two or more concurrent flaw
distributions, then the methods described in this practice
cannot be used without further refinements.
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Abstract—Composites - rescarch at NASA Lewis is focused on their applications in aircraft
propulsion, space propulsion and space power, with the first being predominant. Research on
polymer-, metal- and ceramic-matrix composites is being carried out from an integrated materials
and structures viewpoint. This paper outlines some of the topics being pursued from the
standpoint of key technical issues, current status and future directions.

1. INTRODUCTION

Advanced composites are a key to the development of the next generation of civil
transport aircraft engines. The driving forces for the development of advanced engines are
mission-enabling capabilities and reduced life-cycle costs. An example of a mission-
enabling capability is an advanced environmentally friendly engine for a 300 passenger
supersonic civil transport intended for entry into service in about 2005. Requirements for
this engine include NO, emissions less than 5 gm kg~! of fuel burned, noise emissions in
compliance with FAR 36 Stage III, and low engine weight and acceptable engine
performance to make such an aircraft economically attractive to the customer (Stephens
et al., 1993). Composites, and other advanced materials, will play a key role in meeting
these goals-as well as providing us with more economical and efficient subsonic air
transportation. An example of potential composites applications in a highly advanced
high-bypass ratio turbofan for a subsonic transport is shown in Fig. 1 (Stephens, 1990).

High-temperature composites research at NASA Lewis Research Center is primarily
focused on aircraft engines. The effort includes both materials and structures research
addressing the materials classes illustrated in Fig. 1, i.c. polymer-matrix composites,
metal- and intermetallic-matrix composites, and ceramic-matrix composites. Of necessity,
our concerns include constituent development and property Characterization; composite
fabrication and process modeling; nondestructive evaluation; constituent and composite
property models and design codes; and prediction and measurement of performance and
life under actual or simulated engine conditions. The purpose of the paper is to provide
the reader with an overview of many, but not all, of our composites research efforts. In
the brief sections which follow, we will address each area in terms of its key technical
issues, current status and future directions.

2. POLYMER MATRIX COMPOSI’I'!.’.St

The use of PMCs in aircraft engines can result in significant weight savings and lead
to improved fuel economy, increased payload or increased flight distances. However, the
poor thermal and thermal oxidative stability of these materials limits their use to the
cooler sections of the engine. Considerable advances have been made over the years to
improve the stability of PMCs so that current materials can tolerate extended use at
temperatures up to 650°F. While PMCs are the most mature of all composite materials,

¥ Cleveland State University.
t Contributed by Michael A. Meador.
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Fig. 1. Advanced materials applications for an ultra-high-bypass engine (Stephens, 1990).

a number of challenges need to be conquered before they can be fully utilized in both
commercial and military aircraft engines. Among these are long-term durability,
processability, affordability and repairability.

Over the past two decades, research at the NASA Lewis Research Center has
primarily dealt with improving the stability and processability of high-temperature PMCs
(Meador et al., 1990). Processability and stability are often mutually exclusive properties
for PMCs. Improved thermal oxidative stability in polymers is commonly achieved
through the use of stable aromatic groups, e.g. benzene rings. These aromatic groups are
rigid, highly planar structures and often render the polymers from which they are made
difficult to melt and intractable.

A balance between processability and stability can be achieved by the use of the PMR
approach developed at NASA Lewis in the early 1970s (Fig. 2). Molecular weight, and,
hence, melt flow and processability, is controlled through the use of a latent reactive
endcap (or chain terminating group). At high temperature, this endcap undergoes a
cross-linking reaction to provide a material with good stability, high glass transition

=317

Prepolymer

Monomer Reactants

550-600F

Addition
Reaction

{No Voids)

Cross-inked Network
Fig. 2. Reaction scheme for addition polyimides.
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temperature, and good mechanical properties (both at room temperature and elevated
temperatures). The first polymer developed using this approach was PMR-15 (Serafini er
al., 1972), a high-temperature polyimide capable of extended use at temperatures below
500°F.

A variety of high-temperature polyimides have been prepared via this approach
(Meador et al., 1991) in an attempt to develop new materials with better stability than
PMR-15. Second-generation PMR polyimides, PMR-II, were developed by substituting
more thermal-oxidatively stable monomers into the polyimide backbone; this resulted in
a SO°F increase in the upper-use temperature (Serafini et al., 1976). Further modifications
produced high-molecular-weight versions of PMR-II which showed potential for use at
temperatures up to 600°F (V annucci, 1987).

Recently, efforts have been directed at improving the thermal oxidative stability of
PMR-II polyimides via endcap substitution. This has led to the development of styrene-
endcapped polyimides, V-CAPs (Vannucci et al., 1990) and paracyclophanc-capped
polyimides, CyCAPs (Waters et al., 1991). Both systems have better processability than
high-molecular-weight versions of PMR-II and can be used at temperatures as high as
650°F.

While these modifications of PMR-15 have resulted in new polyimides with better
thermal-oxidative stability, this has been achieved with some sacrifice in processability.
This is primarily due to the fact that these formulations have molecular weights 3-5 times
that of PMR-15. This results in polyimides with melt viscosities nearly three orders of
magnitude higher than PMR-15! Recent efforts have focused on reducing melt viscosities
via (1) monomer substitution and (2) reduced cross-link density.

The melt viscosities of polyimides and other polymers can be reduced and their
melting points lowered by altering their molecular structure to inhibit crystal packing
and other intermolecular interactions in the solid. Since the chemical structures of most
polyimides are fairly linear, crystal packing in these systems can be disrupted by using
monomers with twists, kinks or other flexible linkages. Considerable reductions.in the
melt viscosities of PMR-II and V-CAP polyimides can be achieved through the use of
a 2,2'-trifluorobenzidine, a diamine with a twisted or noncoplanar geometry (Chuang

14—

O PMR-11-50
12[— @ V-CAP-T5
¢ V-CAP-12F-71

Weight loss, %

Time, hr

Fig. 3. A comparison of the thermo-oxidative weight losses of G-40-600 reinforced composites
prepared with PMR-11-50, V-CAP-T75, and a 2.2-bistriﬂuoromcthylbenzjdine substituted V-CAP
(V-CAP-12F-71) after agirig in 1atm air at 371°C (700°F).
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etal., 1992). Polyimides prepared with this diamine have better thermal-oxidative stability
than both PMR-II and V-CAP resins (Fig. 3). Another twisted biphenyldiamine has been
used to prepare thermoplastic polyimides which have the potential for use in high-
temperature synthetic fibers (Chuang et al., 1994). Reduced melt viscosities have also been
achieved through the use of a series of flexible multi-ring diamines (Delvigs et al., 1994).
However, due to the presence of oxidizable methylene groups, polyimides made with these
diamines have stabilities comparable to that of PMR-15.

Reduced cross-link density in addition-cured polyimides can also improve process-
ability; however, this may result in decreased glass transition temperatures and poorer
thermal-oxidative stability (Vannucci ef al., 1992).

Recent concern over the use of mutagenic diamines, such as methylenedianiline (U.S.
Department of Health and Human Services, 1986), has spurred a considerable amount of
activity aimed at protecting workers and the environment from potential health risks
posed by the use of toxic or carcinogenic diamines. This has led to the search for diamines
which do not pose a health risk to materials suppliers and fabricators. A variety of
diamines have been examined as replacements for MDA in PMR-15. However, many of
these do not provide polyimides with acceptable mechanical properties and thermal-
oxidative stability. Polyimides prepared with a mixture of some of these diamines show
some promise as MDA replacements (Vannucci and Chriszt, 1993).

The overall performance-and durability of PMCs is strongly influenced by the
strength of the resin-fiber interface (Bowles, 1990). A variety of graphite fibers are
commercially available today. The method of preparation and the surface treatment of
each of these fibers is different and information on these processes is usually proprietary.
A recent study on a composites prepared with a series of commercially available graphite
fibers shows that the nature and strength of the resin-fiber interface is strongly influenced
by dipolar interactions occurring between the resin and fiber surface (Serrano et al., 1994)
(Fig. 4). These dipolar interactions occur between polar functional groups (hydroxyl,
carbonyl and carboxylic acid) present on the fiber surface and the polyimide chain. A
strong correlation was found between the polar energy of the fiber surface (measured by
both fiber wetting and XPS) and the interlaminar shear strength of PMR-15 composites
reinforced with that fiber. A similar correlation was found between composite weight loss
and fiber surface polar energy. More work is needed to better characterize these dipolar
interactions in order to tailor the fiber surface to improve the strength of the resin-fiber
interface. ,

Oxidation-resistant coatings can also improve the thermal oxidative stability of
PMCs. A variety of ceramic coatings have been applied to PMR-15 and PMR-II
composites via plasma-assisted chemical-vapor deposition. Silica coatings up to 3500 A
thickness applied to a PMR-15 composite substrate reduced weight losses after 300 h
aging in air at 390°C from 20% to nearly 5% (Miller and Gulino, 1994). A five-fold
reduction in the weight loss of a PMR-II-50 composite after 300 h at 371°C was achieved
with the use of a silicon nitride coating (Harding and Sutter, 1993). This coating survived
1000 thermal cycles from 25 to 371°C without any signs of cracking (Fig. 5). While all of
these coatings adhere well to resin-rich surfaces, they do not adhere well to the machined
surfaces of composites. Since engine components have bolt holes and machined surfaces,
this problem must be solved before oxidation-resistant coatings can be used on PMCs in
these applications.

Research in the Polymers Branch at the NASA Lewis Research Center has attempted
to overcome some of the technical challenges that prevent the effective utilization of
PMCs in aircraft engines. The long-term durability and stability of PMCs can be
improved through the use of more stable resin systems, through better understanding and
control of the resin-fiber interface, and through the use of oxidation-resistant coatings.
Processability in high-temperature polymers can be enhanced by controlling and
modifying the polymer’s molecular structure. However, further work is needed to develop
materials and processes which decrease the manufacturing costs and improve the
reliability of high-temperature PMC components. These areas are currently under
investigation.
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strength of PRM-15 composites reinforced with a variety of graphite fibers.
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3. METAL-MATRIX COMPOSITES!
3.1. Materials research

Metal-matrix composites (MMCs), which are defined here to include intermetallic
matrices, have received considerable attention as candidates for advanced aerospace
applications. These include advanced military and commercial aircraft, the supersonic
High-Speed Civil Transport (HSCT), the National Aerospace Plane, and several applica-
tions in rocket engines such as those used on the Space Shuttle. These materials can offer
higher strength and stiffness at lower weight than current monolithic Ti and Ni alloys.
Research at NASA Lewis has focused on Ti-based MMCs for applications in the compres-
sor section of commercial subsonic aircraft, and Fe-and Ni-based MMCs for applications
in the turbine section of subsonic aircraft and the exhaust nozzle of the HSCT.

The first MMCs in aircraft gas turbine engines will likely be a Ti-based MMC used
in a low-risk static part, but the highest payoffs will be attained with rotating parts such
as reinforcing rings in compressor disks. One key issue for these composites is the need for
manufacturing technology to produce reliable components at a reasonable cost. Ti-MMCs
incorporating SCS-6 fibers produced by the foil/fiber/foil, arc-spray, plasma-spray and
powder-cloth processes by various organizations have roughly comparable properties
(MacKay er al., 1991; Pickens et al., 1993). Presumably the same may be true for tape
casting; however, results have not been published. Because fiber strength dominates the
0° composite strength, distinctions between processes must be made using the same—or
an equivalent—strength fiber lot. One of few such studies made has found equivalent 0°
strength between composites made by powder cloth and plasma spray (MacKay et al.,
1994), two very dissimilar processes. This observation was explained by the fact that
equivalent strengths were measured in fibers extracted from the composites, even though
plasma spraying had produced some exfoliation of the carbon coating.

Other advantages and disadvantages of these processes in terms of cost, off-axis
properties and long time durability are still being assessed. The foil/fiber/foil process is
the most mature. It and the arc-spray process, which requires matrix alloy wire, promise
lower oxygen levels than the processes using powder, but are limited to formable alloys

! Contributed by Robert V. Miner and Michael V. Nathal,
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and will probably result in higher cost. The two thermal-spray processes, arc and plasma
spray, share an advantage in uniform fiber placement, but possible long-time fiber degra-
dation due to some exfoliation of the carbon coating must be explored. Of the powder-
based processes, both tape casting and the powder-cloth method utilize polymer binders
that must be removed prior to final consolidation, although impurity levels in laboratory
coupons have been equal to or lower than those measured in MMCs made by competing
processes (MacKay et al., 1994). Tape casting is probably to be favored over the powder-
cloth method as a more continuous process. However, yields may be lower and oxygen
levels may be higher since a finer powder fraction is required.

Key property issues which will limit the range of application for Ti-MMCs are their
environmental resistance and transverse properties. Their low environmental resistance is
accentuated in thermomechanical fatigue (TMF) loading. The Ti-MMCs studied to date
all exhibit very low lives in TMF cycles having tensile loading at low temperatures (Gabb
et al., 1993). TMF behavior in air will likely restrict use to temperatures below about
500°C. Transverse properties of Ti-MMCs are usually found to be lower than those of the
monolithic matrix. Transverse tensile strength and ductility (Brindley and Draper, 1993),
fatigue resistance in both air and vacuum (Gayda and Gabb, 1992; Lerch, 1990) and TMF
resistance (Castelli, 1993) all show this trend. In these studies, it has been shown that
failure initiates by debonding of the fiber from the matrix, which can occur in one or more
of the C-rich layers of the SCS-6 coating and/or the reaction zone. The limited transverse
properties may be overcome by cross-plied fiber architectures, which has been successful
in some but not all cases (Lerch, 1990; Larsen e al., 1992). As shown in Fig. 6, the alter-
native strategy of improving matrix composition also can be very effective in improving
transverse composite strength. Both matrix strength and ductility are considered impor-
tant in determining composite strength, although composite ductility has remained low
(Brindley and Draper, 1993).

Despite the property limitations which have been found for Ti-MMCs, applications
such as reinforcing rings in the bore of compressor disks show considerable promise
~ because temperatures are limited, direct contact between the MMC and oxygen is
excluded, and transverse loads are low. Such components have been successfully engine
tested (Kandebo, 1992). .

In contrast, the technology for (Fe,Ni)-based MMCs is much less mature, as it is still
in the stage of laboratory-scale coupons. These composites have potential to operate in
the 1000-1100°C range as turbine and nozzle components. Oxide fibers, particularly
Al,O;, remain as the best current choice for reinforcement, due to their more favorable
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Fig. 6. Transverse properties of several SCS-6 reinforced titanium aluminide MMCs. By varying

composite processing methods and especially matrix composition, the transverse tensile strength

has been doubled in the last few years. After Brindley and Draper (1993); reproduced by
permission of the U.S. Government.
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Fig. 7. Weibull probability plots showing strength degradation of sapphire fiber after composite
consolidation (Draper and Locci, 1994).

chemical and thermal expansion compatibility with the matrix compared to SiC fibers.
Although intermetallics such as NiAl offer the greatest potential due to their light weight
and higher-temperature capability (Bowman, 1992), our current focus is on utilization of
the more ductile superalloys as nearer-term matrices. Even in the more ductile superalloy
matrix composites, however, significant technical challenges need to be resolved. Of
prime importance is the need to prevent fiber-strength degradation in Al,O; fibers.
Sapphire, the Al,O; fiber with the highest strength potential, has been shown to suffer
from strength reductions of the order of 50% when exposed to a variety of matrices at
typical composite consolidation cycles (cf. Fig. 7; Draper and Locci, 1994). This strength
degradation appears to be caused by the introduction of surface flaws, although
degradation has been observed even when the extent of reaction between fiber and matrix
is very slight or completely absent. Fiber coatings have been proposed as a solution to this
problem. Other oxides such as the Nextel polycrystalline Al,O, fibers are not as attractive
for most engine components, primarily because of their low creep strength at high
temperatures (Yun and Goldsby, 1993). However, they may compete more effectively if
they are less susceptible to strength degradation.

In summary, the future directions for the Ti-MMCs appear to be in the areas
addressing actual turbine engine application. Thus, manufacturing technology for lower
cost and improved reliability, the methodology needed for efficient design and accurate
life prediction, and the accumulation of actual engine test experience should be
emphasized. Improved MMC performance through matrix alloy development, environ-
mental protection systems, and the use of alternate fibers are also logical choices. For the
less mature superalloy matrix composites, laboratory-scale feasibility demonstrations are
still required before engine applications can be seriously considered. The choices for fiber
and the development of fiber coatings are currently limiting progress towards the goal of
demonstrating mechanical properties which can compete with monolithic superalloys and
intermetallics.

3.2. Deformation and damage of MMC/IMCs'

To fully realize the benefits offered by MMCs, experimentally verified, computation-
ally efficient design and life-prediction methods must be developed for the advanced
multi-phased materials of interest in advanced engine and propulsion systems.
Consequently, these analysis tools must admit physically based, viscoplastic deformation

! Contributed by Steven M. Arnold and Michael G. Castelli.
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life models and be compatible with the finite element method in order to accurately
describe the complex thermomechanical load histories typical in the aerospace structures
of interest. Furthermore, in order to assist both the structural analyst and the material
scientist in developing and utilizing these materials, these tools must encompass the
various levels of scale for composite analysis.

To respond to this difficult challenge, parallel approaches wherein the starting point
is at the micro- and macroscale have been established at LeRC in deformation and
damage modeling and experimental characterization and verification. Clearly, each
approach has its realm of applicability, with micromechanics focusing primarily upon
applications involving fabrication, material development and life assessment, and the
primary usefulness of the macroscale approach' being in the design and analysis of
structural components. The motivation for pursuing two parallel, yet not mutually
exclusive approaches, is heightened by the fact that no one approach is clearly superior,
relative to the primary goal of developing accurate, computationally efficient, and
experimentally validated analysis tools. For example, the macroscale approach is clearly
the most computationally efficient, yet its accuracy may suffer in comparison to its more
computationally intense micro counterpart, particularly when highly localized,
nonuniform behavior relative to the representative volume element (RVE) dominates.

Significant progress has been made over the past decade in the area of deformation
and damage, with regard to experimental, theoretical and computational mechanics of
composites (Arnold and Castelli, 1994). However, many issues still remain concerning
experimental evaluation and ‘‘appropriate’’ material characterization for this class of
materials. To date the vast majority of elevated-temperature experimental fatigue
research has been conducted under uniaxial, load-controlled, tension-tension conditions
on thin-plate coupons containing partially machined fibers. Great concerns remain within
the experimental and modeling communities as to the effects of all of these variables and
their relative impact on the data generated to date. Thus, the challenge and ultimate goal
is to appropriately control and interpret the experimental evaluations so that accurate
input can be provided to guide theoretical modeling efforts and verify their accuracy.

Numerous models both at the micro and macro scales have been proposed (see
Arnold and Castelli, 1994, for a more thorough review). However, verification,
particularly under thermomechanical multiaxial states of stress, and down selection of
these various models is still needed. The dual approach at LeRC, wherein the analysis of
structures is viewed both from the micromechanical and macromechanical standpoint,
will continue. Ultimately the goal is to develop a hybrid approach for both deformation
and damage that is both computationally efficient and accurate under general
nonisothermal, multi-axial loadings. Consequently, one future trend will therefore be in
the area of symbolic and parallel computations, so as to capitalize on the advances made
in software design and computer architecture. Also, for multi-axial verification purposes,
benchmark structural testing and analysis will be extremely important and pursued
vigorously. It is our expectation that within the next decade accurate and computationally
efficient design and analysis techniques will be developed and experimentally verified for
a wide range of advanced composite systems with respect to high-temperature, time-
dependent deformation and damage, thereby encouraging their assimilation into industry.

- 4, CERAMIC-MATRIX COMPOSITES
4.1. Materials research?

Ceramics offer the potential to operate uncooled or with less cooling and at higher
material temperatures than superalloys. This potential plus their low density and good
resistance to oxidation make materials such as silicon nitride and silicon carbide extremely
attractive. However, their brittle behavior and resultant sensitivity to small flaws that are

" The macroscale (continuum) approach is where the composite is considered as an isotropic material in its
own xnghl. with its own experimentally measurable properties.
Contributed by Stanley R. Levine.
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cither inherent in the as-produced material or which develop in service have precluded
their reliable use in gas turbines. Recent progress, primarily in Japan and the United
states, has demonstrated that fracture toughness, high temperature strength, and
statistical reliability can be simultaneously improved. These improvements have resulted
in improved functional reliability with durabilities on the order of 100s of hours in
prototype automotive gas turbines and the ability to withstand major impact events.
However, invariably something unanticipated occurs to cause catastrophic fracture.
Thus, the question of the technical feasibility of ceramics for terrestrial engines remains
open along with the question of economic viability vis-a-vis more conventional metal
engines (Anon, 1993).

Aircraft gas turbine engines require an even higher degree of reliability. It is doubtful
that monolithic or in situ toughened ceramics can achieve the required functional
reliability levels in highly stressed rotating components due to the temporal nature of the
flaw population. However, for small, low-stress, static components, they have proven
viable (Levine and Herbell, 1992). Because unreinforced ceramics are subject to cata-
strophic fracture behavior and low reliability due to flaws, NASA Lewis has focused on
fiber-reinforced ceramics for about the past 10 years. Our goal has primarily been to
identify and develop fiber-reinforced ceramics with performance capabilities beyond
those of superalloys in aircraft gas turbines. Therefore we have generally left to the
industry, the pursuit of lower-temperature capability systems based on off-the-shelf
fibers. We have primarily emphasized the development and characterization of advanced
fibers, interphases and systems. Much progress has been made in materials, but many
obstacles remain. These are discussed below. h

The key to reliable, durable, strong, tough and affordable continuous-fiber-

reinforced ceramics resides primarily with the reinforcements. The characteristics we seek
are: high strength and stiffness, low density, matrix compatibility both chemically and
with respect to thermal expansion match, small diameter for handleability, weaveability
and optimum toughening, good thermal and microstructural stability, and, finally,
affordable cost. Many of these attributes are also desired in ceramic fibers for
reinforcement of metal and intermetallic-matrix composites (DiCarlo, 1991).

To support our interest in fiber development for ceramic-matrix composites (as well
as metal- and intermetallic-matrix composites), we have invested considerable effort and
resources in the development of fibercharacterization capabilities. Our facilities include
equipment for measurement of fiber fast-fracture strength and elastic modulus at room to
elevated temperature in air, vacuum and inert environments, and a laser-speckle strain-
measurement system for elastic property measurements. The latter is under continued
development to provide precision strain measurements for tensile fast fracture and creep.
Also in place are systems for measurement of creep and stress rupture in air, vacuum and
inert environments. The very simple bend-stress relaxation test (BSR) developed at LeRC
has provided the industry with a simple, quick and readily implemented test for
assessment of the relative creep resistance of fibers (Morscher and DiCarlo, 1992).
Finally, in conjunction with other laboratories, we are contributing to the development of
standardization of fiber test methods.

As a frame of reference for discussing fiber status, data will be limited to bend-stress
relaxation comparisons. In the BSR test, a straight fiber is constrained to a uniform radius
of curvature by tying it into a loop or placing it in a fixture (R,). After high-temperaturc
heat treatment, the constraint is removed and the radius of curvature is measured (R,). If
the fiber retains the radius of curvature of the constraint, it has fully relaxed (poor creep
resistance). For this case, m, the bend-stress relaxation ratio, is 0 (m = 1 — Ry/R, = 0).
If it returns to its original straight shape, R, = =, and no relaxation (or creep) has
occurred (m =1 — Ry/R, = 1).

Many of the fiber characteristics discussed above for optimum fiber performance are
best satisfied by stoichiometric silicon carbide. Several approaches to fabrication for
silicon carbide fibers are showing promise for attaining good high-temperature stability
and strength. The chemical vapor deposition approach of Textron Specialty Materials has
yielded a variety of fiber microstructures and chemistries. The ability to tailor and control
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the process has yielded a 50 micron fiber with the best combined strength and creep
resistance seen to date. Diameter reduction is still an issue. Carborundum has produced
creep resistant «-SiC fibers by sintering of extruded green fiber. At this stage of
development, the tensile strength is less than desired and the surface roughness and
diameter are on the high side. Finally, Dow Corning has produced a near-stoichiometric
SiC fiber by the polymeric precursor pyrolysis route. This fiber exhibits good creep
resistance, high tensile strength and good handleability. One can conclude from the above
that cost and the need for handleability, which is application driven, will be decisive
factors in fiber selection. These four fibers along with commercially available fibers are
compared in terms of bend-stress relaxation in Fig. 8 (DiCarlo, 1994). ~

A major concern with SiC fiber-reinforced ceramics is the oxidation resistance of the
fiber and the fiber-matrix interface. One approach that can eliminate the interface
oxidation issue is the use of oxide fibers and interphases in an oxide matrix. A number of
textile-quality multi-filament oxide fibers based on either alumina or aluminosilicate
compositions are commercially available. Since the creep of these fibers limits them to low
use temperatures (< 1100°C), they have not been the focus of our composites research.
We have instead sought to identify fibers that have greater capability than single crystal
sapphire. We are examining the potential of doped sapphire (Sayir et al., 1993) and
various eutectic compositions such as ZrO,-Al, O, (Farmer et al., 1993) and YAG-AI,0,
for potential to offer greater toughness and better high-temperature strength retention
and slow crack-growth resistance than sapphire. Exploratory research in the growth of
these advanced fibers is being carried out by the laser-heated floating zone approach.
Promising fibers are then transitioned to the commercial edge-defined film-fed growth
process.

Interfaces with proper weak bonding and oxidative stability are also critical to the
satisfactory mechanical performance of fiber-reinforced ceramics. The weak bonding
requirement has been achieved with carbon coatings on the fibers in silicon carbide fiber-
reinforced systems. However, the oxidation of the carbon interface and SiO, formation
on the fibers (and matrix if SiC or Si;N,) results in bonding of the fibers to the matrix and
a loss of strength. Surface coatings of the composite, dense matrices and SiC overlayers
on the carbon-coated fibers can alleviate this problem, but do not represent a reliable
long-term solution. Other approaches are being pursued at NASA LeRC including
Ti-Si-C, BN and porous oxides. Oxide fiber-reinforced systems also require fiber
coatings. For single crystal fibers, we have been examining porous oxides and highly
anisotropic oxides. Application methods include sol gel, polymeric precursors, and
CVD/CVI.

The composite systems being pursued at NASA LeRC can be classified by the type of
reinforcement. With SiC reinforcements, we are investigating reaction-bonded silicon
nitride (RBSN) and silicon carbide by silicon melt infiltration (Bhatt and Behrendt, 1992).
Polymeric precursor fabrication approaches are also being pursued (Hurwitz, 1992).
RBSN is attractive because the silicon nitridation process produces essentially no
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Fig. 8. Onc hour stress relaxation ratio, m, vs reciprocal temperature for several ceramic fibers
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Composites research at NASA Lewis Research Center 799

dimensional change and thus the approach is strain compatible with fiber reinforcement.
The polymeric precursor approach is attractive for its complex shape potential. Finally,
the melt infiltration approach is attractive because it can yield fully dense matrices.

Our melt infiltration (MI) approach, called reaction forming, is carried out by
forming a carbon precursor matrix of controlled porosity and pore size by pyrolysis of a
foamed polymer. This allows thorough and uniform silicon melt infiltration and
conversion to a silicon carbide plus residual silicon matrix whose microstructure is
controlled by the precursor network. Alloying of the silicon with niobium or molybdenum
allows the introduction of a third phase for tailoring of toughness, strength and thermal
expansion. This capability is illustrated by the photomicrograph in Fig. 9 (Singh et al.,
1994). Composites can be produced by resin transfer molding (RTM) or by ply lay-up.
However, this process can be combined with chemical vapor infiltration to yield a hybrid
processing approach. The basis for this approach is that all SiC fiber-reinforced
composites will require an interface coating on the fibers. The most reliable and cost-
effective method for placement of this coating would be at the woven preform stage using
chemical vapor infiltration (CVI). Furthermore, this coating can be protected by a SiC
overlayer coating and the preform rigidized by some additional CVI SiC. From this point,
densification can be carried out rapidly and economically by the reaction-formed silicon
carbide process. The carbon precursor can be placed by resin transfer molding (RTM),
pyrolyzed and converted to SiC by Si melt infiltration (MI). This approach has been
dubbed CRM for CVI, RTM, M.

In the oxide matrix arena, we have been investigating the celsian family of glass-
ceramic matrices. Our starting point was barium-aluminosilicate (BaO-Al,05-2Si0,) or
BAS. This glass ceramic offers higher temperature capability than other glass ceramics
commonly reported as composite matrix materials (c.g. LAS, MAS, BMAS). Bend
strength for SCS-6- reinforced BAS is shown in Fig. 10 in comparison to the unreinforced
matrix (Bansal, 1994). Strontium substitution for barium in total or in part is being
investigated for improved processability, and small-diameter fiber reinforcements are
also being investigated. In addition to glass ceramics, we are looking at crystalline
matrices such as mullite and alumina combined with cither SiC or single-crystal oxide
reinforcements.

In summary, the identification of strong, stable and weavable fibers and durable
interfaces continue to be very high priority areas for CMC research. Advanced fibers and
interfaces are being incorporated into microcomposites and, as sufficient fiber quantities
become available, into coupons for assessment of mechanical and environmental
durability behavior. The more mature and promising systems are being advanced to rig
and engine tests as quickly as possible. -
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4.2. Current trends in CMC component analysis'

From an aerospace design engineer’s perspective, ceramic composites offer signifi-
cant potential for raising the thrust/weight ratio and reducing NO, emissions of gas
turbine engines. Considering that these materials will be produced from abundant
nonstrategic materials, it is not surprising that research has focused on improving ceramic
material properties through processing, as well as establishing protocols for sound design
methodology. In particular, continuous ceramic fiber composites exhibit an increase in
work of fracture, which allows for ‘‘graceful’’ rather than catastrophic failure. When
loaded in the fiber direction, these composites retain substantial strength capacity beyond
the initiation of transverse matrix cracking despite the fact that neither of their
constituents would exhibit such behavior if tested alone. Indeed, first matrix cracking
consistently occurs at strains greater than that in the monolithic matrix material. As
additional load is applied beyond first matrix cracking, the matrix tends to break in a
series of cracks bridged by the ceramic fibers. Thus any additional load is borne
increasingly by the fibers until the ultimate strength of the composite is reached. For most
applications the design failure stress will be taken to coincide with the first matrix
cracking stress. Matrix cracking usually indicates a loss of component integrity since this
phenomenon allows high-temperature oxidation of the interface and fiber, which leads to
the strength loss of current composites.

The analysis and design of components fabricated from ceramic composite materials
require a departure from the usual deterministic design philosophy (i.e. the factor of
safety approach) prevalent in the analysis of metallic structural components, which are
more tolerant of flaws and material imperfections. Under applied load, large stress
concentrations occur at macroscopic as well as at microscopic flaws, which are
unavoidably present in the composite as a result of processing or in-service environmental
factors. The observed scatter in component strength is caused by various failure
mechanisms, and their corresponding severity leads to composite fracture when the
damage-driving force or the effective energy release rate reaches a critical value. This
scatter is evident in Fig. 11, where the uniaxial failure data for an oxide-oxide ceramic
composite are depicted (Ye, 1994). The data represent the first matrix cracking stress asso-
ciated with the fiber direction of an alumina matrix reinforced with polycrystalline .
alumina fibers. Note that the Weibull modulus estimated from this data is 3.68. This value
is an indication that significant scatter in composite microcracking strength is present.
Observe that the largest stress value in this data set represents over a 330% increase from
the lowest level. We should-also note that a number of deterministic micromechanical
fracture theories exist in the literature that predict a composite’s first matrix cracking
strength as a function of its constituents. Since all are based on assumed idealistic

! Contributed by Stephen Duffy.
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microstructures, they are typically unable to predict the unavoidabie strength variation in
current-generation composite materials. In addition, most ceramics exhibit decreasing
bulk strength with increasing component volume (the so-called size effect). Since failure
is governed by the scatter in strength (ultimate or microcrack yield), statistical design
approaches must be employed. -

Utilizing structural reliability methods provides a more general accounting of the
entire spectrum of values that strength parameters may exhibit. However, the reliability
approach demands that the design engineer must tolerate a finite risk of unacceptable
performance. This risk of unacceptable performance is identified as a component’s prob-
ability of failure. The primary concern of the engineer is minimizing this risk in an
economical manner. Most quantities that are utilized in engineering designs have, to a
greater or lesser extent, some level of uncertainty. This means that if reliability methods
are utilized, appropriate analytical tools needed to quantify uncertainty must be readily
available. A number of tools and design aids for dealing with uncertainty in a rational
fashion have been developed here at NASA Lewis Research Center. These tools include
reliability models and computer software that have been tailored to specific composite
systems. The reader is directed to the work by Thomas and Wetherhold (1991), Duffy and
Arnold (1990), Duffy and Manderscheid (1990) and Duffy et al. (1993), regarding the
development of reliability models. A number of these reliability models have been
incorporated into public-domain computer algorithms such as the T/ CARES (Toughened
Ceramics Analysis and Reliability Evaluation of Structures) and C/CARES (Composite
Ceramics Analysis and Reliability Evaluation of Structures). These computer algorithms
are coupled to an assortment of commercially available general-purpose finite element
programs. The algorithms yield quasi-static component reliabilities of structures fabri-
cated from ceramic composites; however, work is underway to formulate time-dependent
algorithms. Current thought focuses on incorporating the principles of continuum
damage mechanics in a similar manner outlined by Duffy and Gyekenyesi (1989).

Focusing attention on the C/CARES algorithm, a noninteractive reliability model
has been incorporated where individual uniaxial plies are treated as two-dimensional
structures. Each ply (which is discretized in the analysis) is assumed to have five basic
strengths or failure modes. The assumption is made that failure is governed by the
strength of the weakest link. In essence the component is treated as a series system, and
the component probability of failure is evaluated accordingly. Admittedly, the weakest-
link concept is a somewhat conservative approach for composites where micro-
redundancies exist in certain directions due to parallel arrangements of fibers. However,
a macro-level approach to strength measurements should capture this behavior through
enhanced distribution pafameters. This distinguishes the T/CARES and C/CARES codes _
from other reliability software where the probability of point failure is usually evaluated. }
Treating a discretized component as a system allows the design engineer to evaluate size '
effects, which is not possible when the probability of point failure is evaluated. In
addition, the CARES family of software includes parameter-estimation modules that
allow the design engineer to evaluate the strength-distribution parameters from failure
data. It is assumed that failure strengths can be characterized by either a two- or three-
parameter Weibull distribution.

Recent progress in processing ceramic composites has not been matched by
mechanical testing efforts. This type of data supports the creation of a complete design
data base for a given material. In addition, there is a definite need for experiments that ;
support the development of reliability models. Initially this effort should include i
experiments that test fundamental concepts (¢.g. quantifying size effect in the fiber
direction) within the framework of current stochastic models. For example, probing
experiments should be conducted along various biaxial load paths to establish level
surfaces of reliability in a particular two-dimensional stress space (similar to probing yield
surfaces in metals). Concepts such as the maximum stress response which is often assumed ik
in the noninteractive reliability models could be assessed. After establishing a theoretical
framework, characterization tests should be conducted to provide the functional
dependence of model parameters with respect to temperature. Finally, data from
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structural tests that are multiaxial (and possibly nonisothermal) could be used to challenge
the predictive capabilities of models through comparison to benchmark response data. It
cannot be overemphasized that this kind of testing supports design and analysis of
components.

5. STRUCTURAL MECHANICS'

Achieving the full benefits of composites for aerospace-propulsion and power-system
(engine) applications ultimately requires the availability of credible and efficient computer-
based tools for component analysis and design. As implied earlier, tools are required which
can account for both micromechanical and macromechanical factors affecting critical
composite structural performance requirements. Some recent efforts to develop such tools,
for a variety of composite materials and structural concepts, are briefly described below.

5.1. Tools for high-temperature composites

An important factor affecting the behavior of a CMCis the condition of the interface
(or interphase) between fiber and matrix. A distinct interphase can exist as an intentionally
applied fiber coating, or can arise due to chemical reaction that occurs between the fiber
and matrix during composite fabrication and/or during service at elevated temperatures.
The stiffness, strength and thickness of an interphase will influence the overall
thermomechanical behavior of a CMC.

One computer-based tool under development at NASA Lewis Research Center, known
as CEMCAN (for CEramic Matrix Composite ANalyzer), has recently been used to
investigate interface (interphase) effects on CMC behavior. CEMCAN implements a unit
cell or representative volume element (RVE) approach with a novel fiber substructuring
technique. In this technique the fiber is substructured into multiple layers and the
micromechanics equations are formulated at the layer level. The RVE also incorporates a _
" distinct fiber/matrix interphase constituent. -

In recent applications of CEMCAN, a unidirectional SiC/RBSN composite (silicon
carbide SCS-6 fibers in reaction-bonded silicon nitride matrix) was analyzed for both strong
and weak fiber/matrix bond conditions (Mital et al., 1993a). In a strong bond condition,
the thermoelastic properties of the distinct interphase constituent are taken to be the same
as the matrix (upper bound), whereas in the case of a weak bond, the normal and shear
elastic moduli of the interphase are reduced to negligible values (lower bound).

The predicted values of composite effective properties are compared to experimentally
measured values, wherever available, and the properties of the interphase are calibrated.
The variation of composite properties can also be predicted for varying extent of debond
around the fiber circumference or interfacial damage through-the-thickness of the
composite.

Results indicate that longitudinal composite properties are rather insensitive to bond
conditions, while transverse composite properties are influenced significantly by the bond
conditions. Moreover, the comparisons between CEMCAN predictions and experimentally
measured values for a SIC/RBSN composite show good agreement as illustrated, for
example, in Fig. 12. If the interfacial debonding/damage is limited to a few plies, the
degradation in the composite properties is minimal and perhaps difficult to detect by
conventional experimental measurements.

The primary advantage of a tool such as CEMCAN is that it provides a simplified,
but flexible, capability to represent complex factors such as varying degrees of interfacial
bond around the fiber circumference or through-the-thickness, local matrix cracking and
fiber breaks (Mital et al., 1993b), different fiber shapes, etc., and the integrated effect of
all these aspects on the composite effective properties and thermomechanical behavior. The
fiber substructuring technique also permits more accurate (in a piece-wise sense) resolution
of local stress distributions in the composite constituents (fiber, interphase and matrix).

" Contributed by Dale A. Hopkins.
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Fig. 12. Unit-cell model and effective elastic properties for [0] SiC/RBSN composite with
simulated effect of incomplete fiber/matrix bond.

Another computer-based tool under development at NASA Lewis Research Center,
known as BEST—CMS (for Boundary FElement Solution Technique—Composite
Modeling System), has also recently been used to investigate interface effects on CMC
behavior. As the name implies, BEST—CMS employs an innovative discrete boundary
clement methodology and provides sophisticated capabilities for modeling arbitrary fiber
architectures, complex fiber/matrix interface conditions, and complex material
constitutive behaviors. .

The above notwithstanding, a major advantage of BEST—CMS lies in its extremely
simple discretization requirements. Specifically, a BEST—CMS model of the composite
entails discretizing only the exterior surface of the matrix (with 2-D surface elements)
and the centerlines of fibers (with 1-D line elements). The fiber/matrix interface con-
dition is specified merely by entering the type (perfect bond, linear spring, nonlinear
spring, or frictional sliding) and the corresponding spring parameters and/or friction
coefficient. No explicit discretization of the fiber/matrix interface is required, as the
interface behavior is incorporated through the underlying boundary integral equation
formulation. .

The modeling simplicity advantages of BEST—CMS are more apparent when
contrasted to what would be required to create an equivalent finite element model. In the
latter case, the entire volume of fibers and matrix must be discretized with 3-D solid
elements, and the complex fiber/matrix interfaces must be explicitly modeled using
special techniques such as gap elements.

The benefits alluded to above are illustrated in Fig. 13 which shows a sample
BEST—CMS model of a unidirectional laminate and computed stress-strain behavior
resulting from a linear stress analysis (Goldberg and Hopkins, 1993). The stress-strain
results are for a [90], SiC/RBSN composite, with fiber/matrix interface conditions speci-
fied to simulate both perfect and imperfect bonding. The computed results are compared
to experimentally observed behavior, with the simulated imperfect bond case showing
better agreement.

In summary, two alternative computer-based tools and their use for micromechanical
analyses of CMCs have been described. The capabilities of these tools to model complex
factors such as fiber/matrix interface conditions have been demonstrated, and some
degree of credibility has been established through comparisons with experimental
observations. Whereas the previous focus has been on straight-fiber laminated
composites, future emphasis will shift toward more complex composite architectures such
as weaves and braids. Indeed, woven and braided PMCs and CMCs are already being
pursued for potential engine applications. Accordingly, more sophisticated tools will be
needed to enable credible and efficient engine component analysis and design procedures.
The BEST—CMS tool, for example, shows particularly good promise in this domain.

ok 4:0-8
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Fig. 13. Boundary element model and effective stress-strain resuits for [90], SiC/RBSN
composite with simulated fiber/matrix interface conditions of perfect and imperfect bond.

5.2. Tools for sensory/active composites

Sensory/active composites are beginning to receive serious consideration for various
smart structures applications in aeropropulsion systems. Applications include, for
example, position/clearance control, vibration damping and noise suppression. Very
recent progress has occurred in the development of composite mechanics and structural
analysis models which is leading toward computer-based tools for the analysis and design
of smart engine components.

A unified composite mechanics theory was developed with the capability to model
laminated composite structures with embedded piezoelectric layers for both sensory and
active modes of behavior - (Heyliger and Saravanos, 1993). Using a discrete-layer
representation for both displacement and electric potential fields, the theory can
accurately model global as well as local electromechanical response. The inclusion of
electric potential into the state variables allows representation of general electro-
mechanical boundary conditions and facilitates integration with controller models or
other electronic components. Moreover, the formulation includes all energy contributions
from elastic, piezoelectric and dielectric components.

The formulations for static and dynamic response of smart composite beam and plate
structures with embedded sensors and actuators have also been completed, and specialty
finite elements were developed for this purpose. Evaluations have demonstrated the
capability of these formulations to represent either sensory (see Fig. 14) or active
structures, and to model the complicated stress-stain fields including interactions between
passive and active layers (see Fig. 15), interfacial phenomena between sensors and
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composite plies, and critical damage modes in the material. Furthermore, the capability
to predict dynamic characteristics under various electric circuit configurations has been
demonstrated.

The analytical foundations have also been developed to enable the application of
sensory composite structures with delamination-failure detection capabilities by
monitoring changes in their dynamic characteristics (Saravanos, 1993). Such non-
destructive, real-time health-monitoring capabilities may dramatically improve the
reliability of aerospace structural composites. In this work admissible composite
mechanics were formulated enabling representations of the effects of delamination cracks
and disbonds on the laminate properties such as stiffness, damping, inertia, stresses, etc.
An exact analytical procedure was further developed for the prediction of natural
frequencies, mode shapes and modal damping in composite beams with an interlaminar
delamination.

Evaluations for various cantilever beams with a central delamination have been
completed. Correlations with limited reported experimental results show excellent
agreement (see Fig. 16). The results indicate that natural frequencies are rather insensitive
to small delamination cracks. On the other hand, modal damping seems to be a superior
indicator of delamination damage, yet the effects of delamination on damping may vary
based on crack size, laminate configuration and mode order. Thus, the combination in
changes in both damping and natural frequencies seems to provide a damage signature
which may lead to the detection of delamination cracks.

Overall, the mechanics have provided valuable insight into the problem, have
facilitated the interpretation of experimental results, and have demonstrated the
feasibility of smart composite structures with health-monitoring capabilities. More
importantly, the mechanics models have provided the missing link which will enable real-
time, in-service detection of delamination presence, size and location from changes in the
dynamic signature of the composite structure.
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In summary, considerable progress has been made to develop the fundamental
mechanics and structural analysis models necessary to confidently predict the response of
sensory/active smart composites. Future efforts will examine other issues, such as digital
control systems, power requirements, operating limits, etc., necessary to establish the

practical feasibility of smart composite structures in engines.

6. NONDESTRUCTIVE EVALUATION (NDE)!

Composites for advanced high-temperature, high-efficiency engines pose new and
special challenges for NDE. The engine components will consist of a variety of
polymeric-, intermetallic- and ceramic-matrix composite structures. The complex nature
of these structures creates strong incentives for advanced nondestructive interrogation
and evaluation methods. NDE must range from detection of individual flaws to global
imaging of fiber architecture and probabilistic assessment of diffuse flaw populations
(Vary, 1992).

At NASA Lewis Research Center, we approach structural composites from the
viewpoint that the detection and resolution of individual micro-flaws may be unnecessary.
This does not mean that individual macro-flaws such as delaminations, cracks and similar
discontinuities may be ignored. However, it should be recognized that composites may
contain a profusion of minute defects that have no discernable effect on reliability or
performance unless they are in close proximity and interact massively or encourage
degradation in service environments. Then, the challenge is to characterize the collective
effect of several kinds of subcritical flaws on mechanical integrity and strength. This is in
addition to the detection of overt, dominant defects or global aberrations that would have
adverse effects on structural integrity.

' Contributed by Alex Vary.
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Our view is that NDE methods should be applied concurrently in engineering design,
process modeling and structural life analysis. This is in addition to NDE (a) during raw
material processing to assure quality, (b) in early stages of component fabrication to
screen out defective parts, (c) after fabrication to verify structural integrity, and (d)
following service to assess thermomechanical degradation'and residual life. NDE methods
also provide powerful tools for materials characterization and, as indicated below, we are
exploiting these methods in materials testing research to help develop fracture- and life-
prediction codes.

The LeRC Structural Integrity Branch investigates and develops methods for
nondestructive materials interrogation and flaw characterization. The Branch
concentrates on radiographic and ultrasonic techniques including micro-focus
radiography, computed tomography, scanning acoustic microscopy, and laser
ultrasonics. LeRC researchers pioneered the acousto-ultrasonic (AU) technique which is
a practical, sensitive NDE method for assessing variations and degradations of
mechanical properties of composites (Vary, 1990). A Standard Guide for Acousto-
ultrasonic Assessment of Composites, Laminates and Bonded Joints was adopted by
ASTM’s Committee E-7 on Nondestructive Testing (Anon, 1993).

LeRC researchers are currently exploring in situ NDE monitoring of damage
accumulation processes in ceramic-matrix composites during mechanical destructive
testing. This work combines conventional load frame instrumentation with
nondestructive interrogation methods. The in situ NDE methods involve adaptations of
radiographic, acoustic emission, acousto-ultrasonic, thermographic, and laser imaging
techniques. The idea is to apply NDE methods during destructive testing to better
understand materials response and to validate fracture prediction and damage
accumulation models. This can enhance the various inspection opportunities mentioned
previously and the reliability assessment of advanced composite structures before and
following service.

An example of in situ NDE is our use of radiographic images to determine matrix
crack spacing from which one can calculate interfacial shear strengths on the basis of the
Aveston-Cooper-Kelly (ACK) theory (Chulya ef al., 1991). The in situ X-ray method is
superior to the conventional optical method for determining crack spacing. The X-ray
method provides full-field images of matrix cracking through the entire volume of the
gauge section. This NDE method is preferable for materials characterization in that it
does not require unloading and removing specimens which would result in crack closure
and errors in determining crack spacing. :

We apply acoustic emission (AE) and acousto-ultrasonic (AU) methods in situ during
tensile loading of fiber-reinforced ceramics, i.e. ceramic-matrix composites (CMCs), to
identify and discriminate among various failure mechanisms. The objective is to validate
“first fracture’’ and life-prediction models. Our work has identified fracture mechanisms
via AE and AU parameters. For example, AU parameters provide relations between stress
levels and the onset and saturation of matrix cracking (Tiwari and Hennecke, 1993). AU
was is also useful in determining an *‘effective ultrasonic modulus™. We found that this
modulus provides a good measure of interfacial shear strength and correlates with
modulus values determined from tensile tests. These results confirm that AU can provide
a viable approach to nondestructive monitoring of mechanical property changes in
composites.

LeRC has installed facilities for experimental study of composite fracture,
mechanical response and durability under extreme environmental conditions. The
strength, stiffness, toughness and fatigue crack-growth parameters can be evaluated at
temperatures to 3000°F (1650°C) in inert, air and other gaseous environments. These test
facilities meet the challenges associated with establishing mechanical test methods, sample
specifications, and characterization of high-temperature composites over a wide range of
thermomechanical conditions. Probabilistic models and algorithms are being developed
for sensitivity analyses needed for identifying and predicting the effects of defects and
constitutive parameters on the behavior of composites. We expect these latter efforts to
provide foundations for guiding NDE for reliability assessment and life prediction.
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7. CONCLUDING REMARKS

Historically, most new materials have established viable markets and found
commercial success through a linear product-development cycle. In the past the materials
scientist would develop a new material system, prototypical components were then
fabricated and tested, data bases would be established, and design methodologies were
developed in a sequential process. This linear product-development approach was
adequate during the cold-war era when large research and development budgets spawned
a number of successful high-technology material systems (e.g. smart materials, the
utilization of composite materials in the air frames of jet fighters, etc.). However, as
American industry continues the struggle to constantly reinvent itself in the post-cold-war
era, artifacts such as the linear material-development cycle are being discarded. The
current political climate, reduced budgets, and the need to develop dual-use technology all
demand that economic issues (and not national defense needs) will dominate the direction
of materials research and development. The materials community, which includes
material scientists and product design engineers (both at the national research labs and
within American industry), must adopt new integrated product-development teams that
utilize an assortment of multi-disciplinary skills. In addition, these integrated product-
development teams must involve end-users early in the development cycle to ensure
economic viability. A primary goal of the integrated product-development teams must be
a reduction in the material development cycle. The competitiveness of American material
suppliers and their product end-users demands that the cycle for product development be
shortened. If a reduction in time-to-market is achieved, the direct results are more
American jobs and an improved economic position for American industries in today’s
global market.

A reduction in the development cycle requires that the concepts of concurrent
engineering be embraced. Moreover, to establish a concurrent engineering infrastructure
for composites, design guidelines must be established early through codes and standards
organizations such as ASTM and ASME. Unless there is a tremendous cost saving or
system enhancement (e.g. the NO, emission reduction in jet engines mentioned
previously), product engineers will not utilize a new material until they are comfortable
knowing that an appropriate design practice has been codified. The reader need only
study the commercialization (or lack thereof) of polymer-matrix composites and
carbon-carbon composites to find the evidence to support this last statement.

At NASA Lewis, we have adopted this philosophy in the execution of technology
programs for an advanced subsonic transport (AST) and high-speed civil transport
(HSCT) and will continue to apply it in developing new initiatives. These programs are
being carried out by integrated teams of industry, university, and NASA researchers
focused on the needs of the end-use customer. In addition, as the aerospace industry
continues to down-size, the longer-term and more research-oriented aspects of the
business are being cut to the bone. As a result, there is a strong dependence on NASA to
support longer-term research and technology-base efforts as well as near-term focused
research.
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ABSTRACT

The article begins by examining the fundamentals of
traditional deterministic design philosophy. The initia]l section
outlines the concepts of failure criteria and limit state functions,
two traditional notions that are embedded in deterministic design
philosophy. This is followed by a discussion regarding safety
factors (a possible limit state function) and the common utilization
of statistical concepts in deterministic engineering design
approaches. Next, the fundamental aspects of a probabilistic
failure analysis are explored, and it is shown that deterministic
design concepts mentioned in the initial portion of the article arc
embedded in probabilistic design methods. For components
fabricated from ceramic materials (and other similarly brittle
materials) the probabilistic design approach yiclds the widely used
Weibull analysis after suitable assumptions are incorporated. The
authors point out that Weibull analysis provides the rare instance
where closed form solutions are available for a probabilistic
failure analysis. Since numerical methods are usually required to
cvaluate component rcliabilitics, & section on Monte Carlo
methods is included to introduce the concept. The article
concludes with a presentation of the technical aspects that support
the numerical method known as fast probability integration (FPI).
This includes a discussion of the Hasofer-Lind and Rackwitz-
Fiessler approximations.

INTRODUCTION

Most parameters that are incorporated into engineering
analyses have to a greater, or lesser extent, some level of
uncertainty. In order to achicve a general accounting of the

entire spectrum of values that design parameters exhibit
(especially for those cases where one or more of the design
parameters cxhibits substantial scatter) a design engineer should
utilize probabilistic methods. However, a reliability approach to
engineering design demands that an engineer must tolerate a finite
risk of unacceptable performance. This risk of unacceptable
pecformance is identified as a componeat’s probability of failure.
The primary concem of the engineer is minimizing this risk in an
economical manner. To accomplish this requires analytical tools
that quantify uncertainty in a rational fashion. The tools for
dealing with uncertainty in a rational fashion have been developed
in & field of mathematics known as probability theory. Since
entire texts are dedicated to this field, only those concepts that
are applicable to the design of engineered components are
presented here. -

In order to meet the numerical needs that accompany a
probabilistic analysis several research teams sponsored by NASA
Lewis Research Center (LeRC) have focused on the development
and application of rcliability design algorithms. Two of these
groups have produced program deliverables that include reliability
models and computer software. Specifically, one program
focuses on the engincering analysis of components fabricated
from ceramic materials. A number of reliability models
developed for ceramic materials (sec Duffy et al., 1992, for an
overview) have been incorporated into public domain computer
algorithms such as the CARES (Ceramics Analysis and Reliability

‘Bvaluation of Structures), T/CARES (Toughened Ceramics

Analysis and Reliability Evaluation of Structures) and C/CARES
(Composite Ceramics Analysis and Reliability Evaluation of
Structures). These computer algorithms are coupled to an

1Associate Professor, > Graduate Assistant, *Acting Branch Chief



assortment of commercially available general purpose finite
clement programs. The algorithms yield quasi-static component
reliability. In addition the CARES family of software includes
parameter estimation modules that allow the design engineer to
evaluate the strength distribution parameters from failure data.
It is assumed that for this type of reliability analysis the failure
strength of the material can be characterized by cither a two- or
three-parameter Weibull distribution.

The second program that has developed probabilistic
tools for design engineers is the Probabilistic Structural Analysis
Mecthods (PSAM) program. This endeavor takes on & more
global perspective and deals with the stochastic nature of design
parameters in a general fashion. In a manner similar to the
structural ceramics cffort mentioned above, this program
intcgrates probabilistic algorithms with structural analysis
methods. The primary result is the NESSUS (Numerical
Evaluation of Stochastic Structures Under Stress) computer
software.

This article presents the underlying engineering
concepts that support the technical aspects of both the CARES
and PSAM programs. In addition, the authors outline the
commonality between the programs by demonstrating the shared
technical principles. Specific details regarding the CARES family
of softwarc algorithms and the NESSUS software arc
incorporated into the conference presentation that accompanics
this article.

FAILURE CRITERION & LIMIT STATE FUNCTION

The success of a structural analysis hinges on the
appropriate choice of design variables used to describe the overall
thermo-mechanical behavior of a component. The design
variables can include, but are not limited to, strength parameters,
external loads, allowable deformations at predetermined locations
in the component, cycles-to-failure, and material stiffness
properties. After the engineer has determined what design
variables are pertinent to a given class of design problems, they
can be assembled in an N-dimensional vector. This vector of
design parameters can be identified as

Yo = Ou Yy - N @

Design variables can easily interact with' one another, thus a
functional relationship is needed to describe any interaction. This
function is most commonly referred to as a failure criterion.
Common cxamples include strength based criterion such as the
maximum distortional energy criterion and the Mohr-Coulomb
criterion; fatigue failure criterion are represented by Miner’s rule;
and fracture criterion include the critical strain energy release
rate method and the stress intensity factor methods. Usually a
failure criterion represents the first step in defining a limit state.
If an operational state for a structural component falls within the
boundaries of a limit state, the performance of the structural
component is acceptable. An operational state for a component

that falls on the boundary of a limit state denotes failure. For the
failure criterion just cited a delineation between acceptable
performance and failure is made at a point in the component.

A failure criterion and a limit state function can be
expressed by the general formulation

8 =380, @

Note that g defines a surface in an N-dimensional design variable
space. Once again this function must stipulate how each design
variable interacts in producing failure. Here values of g>0
indicate a safe structure, whereas values of g <0 correspond to
8 failed structure. The failure criterion (or a limit state function)
can be defined by either a complete loss of load carrying
capacity, or alternatively by a loss in serviceability. The
conceptual distinction between a limit state function and a failure
criterion is based on scale. It was indicated above that a failure
criterion focuses on a point. Limit state functions focus on the
component or structure. Often times there is no difference
between the two since failure at & point constitutes failure of the
component. In contrast, consider a structural component where
plastic yield is a possible failure mode. If yiclding (failurc) at a
point is described by a yield function, then this function
represents the failure criterion for this particular mode of failure.
Yet a structural component may not fail if yielding has occurred
only at a point. In fact the component may continue to function
safely until a sufficient number of plastic hinges have formed and
the structure collapses. The formation of a sufficient number of
plastic hinges is described mathematically by a limit state
function. The reader is directed to the extensive literature that
followed Drucker’s initial work (1952) in establishing bounds on
limit state functions for this type of failure analysis. However,
the point is that for a plasticity analysis the failure criterion (i.c.,
the yield criterion) is different from the limit state function.

As 1 prelude to the discussion that follows later
concerning Weibull analysis, a structural component fabricated
from a ceramic material is treated as a weakest-link system. If
one link in the chain fails, the entire chain fails. This assumption
gives rise to a particular modeling approach in calculating
component reliability. It also infers that failure at a point
constitutes component failure. In this sense the failure criterion
and the limit state function will be one in the same.

SAFETY FACTORS & DETERMINISTIC FAILURE
ANALYSIS

To begin contrasting the difference between
deterministic and probabilistic failure analyses the discussion in
this section is focused on a specific failure mode, ic., the
exhaustion of strength capacity. A structural component can fail
when it encounters an extreme load, or when a combination of
loads reaches a critical collective magnitude, and the ability to
withstand the applied load is cxhausted. With the design
algorithms presented in this article the engincer can casily



quantify the magnitude of the extreme load event leading to
failure, and account for the frequency at which this extreme event
occurs. In addition, the strength (or capacity) of the material and
any variation in this design parameter can be quantified. A brief
discussion regarding safety factors (as well as safety margins)
follows. This discussion underscores the need to account for
variability of design parameters in a coherent manner. These
quantities arc typically utilized in deterministic designs, and arc
casily incorporated into probabilistic designs.

In the ficld of structural mechanics it is customary to
define safety factors (and sometimes safety margins) in order to
ascertain how "close” a component is to failing. If L rcpresents
the load on a component, and R represents the resistance (or
capacity) of the material, then the safety factor is defined as

sF =X &)
L

Alternatively, the safety margin can be utilized, and this measure
is defined as

SM =R-1L @

Failure occurs when the safety factor falls below one, or when
the safety margin falls below zero. These two expressions
represent the simplest and most fundamental definition of a limit
state. In the following section where the principles of
probabilistic failure analysis are outlined, these two expressions
are utilized to explain basic concepts. However, to employ cither
safety factors or safety margins the design engineer must quantify
parameters R and L. Data must be collected and a single "most-
likely" value must be assigned for each parameter. If the typical
structural engineer has been exposed to statistical methods, these
concepts were encountered in quantifying material properties
from experimental data. Thus the design engineer is familiar
with the concept of a central location parameter for experimental
data defined by the sample mean, i.c.,

z-(1) ¥ ®
(3 2

A second parameter, the sample variance, scrves as a measure of
data dispersion. It is defined as

szs[N‘_l)“,'__'jl[x,—;y ®

In the expressions for the sample mean and varianceX;
represents the i® observation in an experiment with N
observations. Other sample descriptors exist (e.g., skewness and

kurtosis); however, the mean and the variance are more widely
recognized and understood. Usually the sample mean is used to
identify a single "most-likely” value for a design parameter. The
variance is most often utilized in a simple minded fashion to
indicate how well the experiment is being performed, ic., a
small variance indicates good experimental technique. However,
this attitude tends to minimize the fact that some design
paramcters inherently behave in a random fashion. Variation in
experimental data can casily be a fundamental property of a
particular design parametcr, not a commentary on experimental
technique.

Often the engineer is not required to determine values
for design parameters directly from experiments. Values for
resistance parameters can be obtained from handbooks or existing
corporate data bases.  Either source of information may
concurrently list values for the standard deviation (defined as the
square root of the sample variance) but this information is too
often ignored in a deterministic failure analysis where the sample
mean is used to represent the "most-likely® value of the design
parameter. Increasing the mean value of the load parameter by
a multiple (usually three) of standard deviations, and decreasing
the mean value of resistance parameter by the same multiple of
standard deviations is one way of including information regarding
data dispersion in a safety factor design . This method, referred
to as the three-sigma approach, yiclds the following definition for
the factor of safety

Ty - 3(Sp"
I, +3(SP¥
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Clearly this definition of the safety factor admits information
concerning the data dispersion for both the load and resistance
parameters.

However, if cither of the design parameters exhibits a
significant scatter, as evidenced by a relatively large sample
standard deviation, then the design engineer must compensate. in
some manner to maintain a prescribed safety factor for a
component. Thus, in an effort to maintain a given level for the
safety factor, analyses predicated on equation (7) may casily lead
to uncconomical designs. Utilizing probabilistic methods can
readily compensate for parameter variation, enabling an engineer
to further pursue 2 design that would be otherwise rejected based
on traditional methods. In addition, for materials that exhibit size
effects where the average strength decreases with specimen size
(c.g., ceramic materials) the three-sigma approach leads to a
fundamental problem in identifying what value to usc for the
resistance random variable.

FUNDAMENTALS OF PROBABILISTIC FAILURE
ANALYSIS

Utilization of equation (7) rcpresents an attempt (o
include more information regarding the true characteristics of



design parameters. Momentarily focusing on the resistance
parameter, cquation (7) implics that the resistance design
parameter is inherently multi-valued. If this multi-valued
resistance parameter assumes different values at random during
strength-to-failure experiments, then the parameter should be
treated as a random variable. This holds for the load design
parameter as well.  Specifically note that if the load and
resistance design parameters are treated as random variables, then
equation (7) does not include any information on the underlying
distribution (e.g., normal, log-normal, Weibull, exponential, etc.)
that characterizes the design parameter. As the discussion
unfolds in this section the reader will see that reliability methods
attempt to overcome this inadequacy.

Consider & component fabricated from a material with
a resistance described by the random variable R. A single load,
represented by the random variable L, is applied to the
component. Both random variables are represeated
mathematically by distinctly different probability density functions
(e.g., normal, log-normal, exponential, Weibull, Rayleigh, etc.).
The load and resistance random variables can be described by the
same type of probability density function as long as the
distribution parameters arc different.

However, in this discussion the distributions for the
random variables are left unspecified. This is intentional in order
to simplify and emphasize scveral issues. Making use of the
concept of a safety factor, the probability of failure for
component where a single load is applied is given by the
expression

P, = Probability(R/L s 1) ®

Alternatively, the probability of failure can be defined using the
safety margin. Here

P, = Probability(R - L < 0) ®

For cither definition, P, is the product of two finite probabilities
summed over all possible outcomes. Each probability is
associated with an event and a random variable. The first event
is defined by the random variable L taking on a value in the

range
dx dx
(x-—;]‘LS(Z*—Z-] (10)

The probability associated with this event is the area under the
probability density function for the load random variable over this
interval, i.c.,

P, = f,0) dx an

The second event is associated with the probability that
the random variable R is less than or equal to x. This is the
area under the probability density function for the resistance
random variable over the range from minus infinity (or an
appropriate lower limit defined by the range of the resistance
random variable) to x. This second probability is given by the
cumulative distribution function evaluated at x, i.e.,

P, = Fp(x) 12)

With the probability of failure defined as the product of these two
probabilities, summed over all possible values of x, then

Pp= [ Fp(x) £,0) & a3

To interpret this integral expression, consider Figure 1.
This figure contains a graph of an arbitrary probability density
function (f;) for the resistance random variable superimposed on
the graph of an arbitrary probability density function (/) for the
load random variable. Note that R and L must have the same
dimensions to plot these two quantities on the same graph. A
common misconception is that P, is the arca of overlap
encompassed by the two probability density functions. Scrutiny
of equation (13) leads to the appropriate conclusion that the
probability of failure is the area under the composite function

Nxe (¥) = Fr(x) £ (x) 149

Due to the complexities introduced by specifying Fp(x) and
£.(x) a closed form solution rarely exists for equation (13).
Onec exception is the application of equation (13) to ceramic
materials, which is discussed in the next section. )

CERAMIC MATERIALS AND SYSTEM RELIABILITY

Even though variations in loads and strength can be
readily accommodated by the concepts presented in the previous
section, for components fabricated from ceramic materials it is
the variation in material strength that dominates the design. Lack
of ductility combined with flaws, defects, or inclusions that have
various sizes and oricntations leads to scatter in failure strength.
Thus the strength associated with these ceramic materials reflects
an intrinsic fracture toughness and a homogeneous distribution of
flaws present in the materials. The analytical concepts presented
in this section will accommodate this singular focus on strength
variation.

Experimental data indicates that the continuous random
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Figure 1 An arbitrary load - resistance interference graph

variable representing uniaxial tensile strength (a resistance design
parameter) of monolithic ceramics is asymmetrical about the
mean and will assume only positive values. These characteristics
rule out the use of the normal distribution (as well as others) and
point to the use of the Weibull distribution or a similarly skewed
distribution. The three-parameter Weibull probability density
function for a continuous random strength variable, denoted as
%, is given by the expression

s (3] (2] "ol (5] 0o
for ¢ > y, and

fr(a) =0 a6

for ¢ < y. In equation (15)  is the Weibull modulus (or the
shape parameter), B is the Weibull scale parameter, and y is a
threshold parameter. If the value of the random variable is below
the threshold parameter, the probability density function is zero.
Often the value of the threshold parameter is taken to be zero.
In component design this represents a conservative assumption,
and yields the more widely used two-parameter Weibull
formulation.

If the resistance design parameter is characterized by
the Weibull distribution and the load design parameter is assumed
deterministic, then the following probability density function

£ =8(x-x,) an

is utilized in equation (13) for the load random variable. Here §
is the Dirac delta function defined as

x=x,

8(x - x,) -{.(; xwx, (18)

Note that the Dirac delta function satisfies the classical definition
of a probability density functions. This function represeats the
scenario where the standard deviation of a distribution approaches
zero in the limit, and the random variable takes on a central value
(identified here as x,). Insertion of equation (17) into equation
(13) yiclds the following expression for the probability of failure:

P= [P0 8(x - x,) & a9

However, with the Dirac delta function embedded in the integral



expression, the probability of failure simplifies to

P, = Fi(x,) 20

Thus the probability of failure is governed by the cumulative
distribution function that characterizes the resistance random
variable. This expression (with modification) is a fundamental
concept associated with Weibull analysis.

Equation (20) yiclds the probability of failure (after an
appropriate distribution has been specified for the random
variable R) for & simple component with a single deterministic
load which is identified as x,. However, a unique property of
ceramic materials is an apparent decreasing trend in strength with
an increase in the size of the component. This is the so called
size effect. As an example, consider that the simple component
represents a uniaxial tensile specimen. Now suppose that two
groups of these simple components exist. Bach group is identical
with the exception that the size of the specimens in the first group
is uniformly smaller than the specimens in the second group. For
ceramic materials the sample mean from the first group would be
consistently and distinctly larger in a manner that can not be
accounted for by randomness. Thus equation (20) must be
transformed in some fashion to admit a size dependence. This is
accomplished through the use of system reliability concepts. It
should be understood that the expression given in equation (20)
represents the probability of failure for a uniform set of boundary
conditions. If the boundary conditions are modified in any
fashion, or the geometry of the component changes, equation (20)
is no longer valid. To account for size effects and deal with the
probability of failure for a component in a general manner, the
companent should be treated as a system, and the focus must be
directed on the probability of failure of the system.

Typically, for a structural component with a varying
stress ficld, the component is discretized, and the stress field is
characterized using finite element methods. Since component
failure may initiate in any of the discrete elements, it is casy to
consider the discretized component from a systems viewpoint. A
discretized component is a series system if it fails when one of
the discrete elements fail. This concept gives rise to weakest-link
reliability theories. A discretized component is a parallel system
when failure of a single element does not necessarily cause the
component to fail, since the remaining clements may sustain the
load through redistribution. Parallel systems lead to what has
been referred to in the literature as "bundle theories.” These two
types of systems represent the extremes of failure behavior and
suggest more complex systems such as "r out of n” systems.
Here a component (system) of n elements functions if at least r
clements have not failed. However, the failure behavior of
monolithic ceramic materials is brittle and catastrophic. This
type of behavior fits within the description of a scrics system,
thus ceramic materials are modeled as a weakest-link reliability
system.

Now the focus is directed to the probability of failure

of a discrete element and how this failure relates to the ovenull
probability of failure of the component. If the failure of an
individual element is considered a statistical event, and if these
events are independent, then the probability of failure of a
discretized component that acts as a serics system is given by

N
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where N is the number of discrete finite clements for a given
component. Here the probability of failure of the #* discrete
clement (P)) is given by the expression

Fi=vay, @2)

where ¥ denotes volume and ¥ is a failure function per unit
volume of material. This introduces the requisite size scaling that
is associated with ceramic materials. Adopting an argument used
by Weibull (1939) where the norm of the A¥}’s tends to zero in
the limit as N goes to infinity, then the component probability of
failure is given by the following expression

pet-em(-[v) e
[ 4

‘What remains is the specification of the failure function ¥. The
most basic formulation for ¢ is given by the principle of
independent action (PIA). For this reliability model

cGERED e

where 0,, 0, and ¢y are principle stresses. Equation (23) is the
essence of Weibull analysis. The issue of other possible forms
for ¢ has been discussed in detail in articles by Duffy and Arnold
(1950), Duffy and Manderscheid (1990), Thomas and Wetherhold
(1991), and Duffy et al. (1993).

As a final note, equations (20) and (23) can be cquated
once a distribution function is specified for the resistance random
variable. As was indicated earlier, the distribution of choice is
the Weibull distribution. There is a fundamental reason for this
choice that goes beyond the fact that the Weibull distribution
usually provides a good fit to the data. Often times the log-
normal distribution provides an adequate fit to failure data
representing ceramic materials.  However, the log-normal
distribution precludes any accounting of size effects. The reader
is directed to work by Hu (1995) for a detailed discussion on this
matter. As it turns out, once a conscious choice is made to
utilize the Weibull distribution, equations (20) and (23) provides
a convenient formulation for parameter cstimation. The details



for accomplishing this arc provided in Duffy (1995).

The next issue the design engineer is confronted with
concerns the numerical evaluation of equation (13) when & closed
form solution is not readily available. The remainder of this
article is dedicated to this important issue. However, before
proceeding on to the next section the reader is reminded that
probabilistic concepts were introduced by adopting a very simple
failure criterion. In the sections that follow the failure criterion
is left unspecified and the details of the numerical techniques arc
highlighted.

MONTE CARLO METHODS

In this section the authors expand the scope of the
discussion beyond simple failure criterion represented by safety
factors and safety margins. This discussion begins with the
observation that most structural components arc designed based
on the results obtained from a finite element analysis. This
analysis can incorporatc a mechanical analysis, a thermal
analysis, or both. In all cases the design engincer secks to
predict, and most times minimize, the stress field throughout the
component in an cconomical fashion. The stress field is
approximated by the stress state obtained from each discrete
element. Once again the focus of the design algorithms presented
here is on individual (discrete) clements. In general the
reliability of an individual finite clement is computed from the
expression

R = Probability[g(3,) > 0] 25

when a failure criterion is used to define point failure. Note that
the failure criterion is left unspecified thus equation (25) is a
general, fundamental relationship. The discussion that follows
outlines specific details that must be embedded in this
relationship.

To evaluate equation (25) the design space must be
defined. In addition, the relevant joint probability deasity
function that represents the design variables must be established.
As was indicated ecarlier if there arc N random variables
associated with a limit state function, then the design space is an
N-dimensional space (a hyperspace) that represents the entire
domain of possible values of the design variables. In order to
transform a limit state function into a reliability model a joint
probability density function must be utilized. This function
establishes the relative frequency of occurrence for a specific
combination of values (realizations) of the design random
variables. Keep in mind that the limit state function is used to
determine which area of the design space (a region that represents
all possible outcomes of the design random variables) will result
in a successful event. Thus according to equation (25) the safe
domain of the design space should satisfy g(y,)>0. Obviously,
the portion of the design space that satisfies gy, )<0 is the
- failure domain for the finite element. Thus the reliability of a
finite clement is the intcgration of the joint probability density

function over the safe design space defined by the failure
criterion. This integration takes the form

R = [ fo)dy, 26)
.l

where f{ y, ) is the joint density function of the random variables,
and §, is the safe domain of the design space. This concept is
simplified to a two-dimensional design variable space depicted in
Figure 2.

Unfortunately, the integral in equation (26) does not
usually have a closed form solution. An exception to this was
presented in the section where the principles of Weibull analysis
are cxamined. Thus in general, numerical techniques must be
utilized to evaluate the reliability of a finite element. Two
numerical techniques are discussed in this article that provide
approximate solutions of equation (26). They are the
conventional Monte Carlo method, and the fast probability
integration (FPI) method. Other methods exist (the reader is
referred to Hu (1995) for an overview) but only these two
methods are presented here due to limitations placed on the length
of this article. The reader is referred to Wu (1994) for & more
comprehensive development of the numerical techniques
associated with the FPI method. In addition, Hu's thesis (1995)
presents details regarding a Monte Carlo method with an
extremely efficient sampling approach.

The conventional Monte Carlo simulation is
conceptually simple, very general, and relatively straightforward
to implement. Thus it is commonly used to numerically estimate
the probability of failurc when a closed form solution to equation

(26) is unavailable. In general the probability of failure of a
structural component can be expressed as

Pf = [f(yl)‘fyl (27)
's

where 8, is the failure domain that satisfies the expression
g§0,) <0 28)

Equation (27) is an alternative expression to equation (26) since
P,=1-R 29)

Now define an indicator function I such that



Figure 2 Two-dimensional joint PDF with limit state

80,) <0 (30)
gh,) >0
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This indicator function can be included in the integral defined by
equation (27) if the integration range is expanded to include the
range of the design space, i.c.,

P [ 15004, )

3,8,

The integral on the right side of this expression defines the
expectation of the indicator function, i.c.,

EM = [ 15004y, G2)

8,04,

Recall from statistics that the definition of the mean (x) of a
random variable is the expectation of the variable. Thus

b [xftds 63

Also recall that the mean associated with a random variable can
be estimated from a sample taken from the population that is
being characterized by the distribution function ffx). The
estimated value of the mean is given by the simple expression

=

N -
> oo
J=1

2|~

Where x; is the Ah obscrvation in & random sample taken from
the population. In a similar fashion the probability of failure (P
represents the expected value, of the indicator function. Thus
equation (31) can be expressed as

ctim (L ¥ 69
Fr I;E{Nl-n Il}

Here it is implied that a random sample of successes (I=1) and
Jailures (I=0) has been generated. Thus [ is the th evaluation
of the limit state function where the random observations have



been generated from the cumulative distribution function Fy .

The simulation method defined by equation (35) is
referred to as a conventional Monte Carlo simulation. The
objective is to generate a sufficiently large set of obscrvations
@.c., large N) in order to reproduc - the statistical characteristics
of the underlying population that the observations are taken from.
The concept of the conventional Monte Carlo method is shown in
Figure 3, where the solid circles represent a success, i.e., I=1
and g(y, ) <0. The open circles are observations that do not pass
the failure criterion. Here I=0 and g(r)>0. While this
approach may not be the most efficient numerical technique,
cventually it will converge to the correct solution, i.c., the
solution approaches P, in the limit as N approaches infinity.

THE FAST PROBABILITY INTEGRATION METHOD

This section presents the details of obtaining component
reliabilities from fast probability integration (FPI) methods.
These details are presented in terms of the simplified failure
criterion defined by safety factors or safety margins. This is
done to merely clarify technical concepts. At the end of the
section the details are provided that allows the application of this
method to arbitrary failure criterion.

Thus the probability of failure for a structural
component can be expressed as

P, = Probability(R - L 0) G6)

where R is the resistance random variable and L is the load
random variable (both of which were stipulated as design
variables). Define the safety margin as

M=R-1L <%}

The expectation of the safety margin is

By = Bg ~ B G8)

where u,, is the mean of M, s, is the mean of R and y, is the
mean of L. Similarly, the variance of the safety margin is given
by the expression

8% = 8% + 82 - 2cov[R, L] ©9)

where "cov” represents the covariance function, 3, is the
variance of R, and 3. is the variance of L. However, if R and
L are independent random variables, then

cov[R, L] = 0 @0)

and

3 = 3} + 8} (1)

Making usc of the definition of the safety margin, the
probability of failure can be expressed as

P, = Probability(-+= s M < 0) (42)

If R and L are normal random variables, then M (which is also
2 limit state function) becomes a linear combination of two
normally distributed random variables. Thus M is & normally
distributed random variable. Making use of the standard normal
CDF (&), the probability of failure is given by the expression

-0 -tu 43
?, o[ 6") @)
Substitution yiclds
B Ba
Pz |—or 44)
=

Now define the reliability index 8 such that

.
8%+ 8D

45)
P, = ®(-p) 46)

This is equivalent to the integral expression given in equation
(19), i.e.,

P, = [f®RL) dRLL @n
L2

Thus equation (46) rcpresents a "fast integration® of equation
(47), hence the origin of term *fast probability integration” (FPI)
for the approach that utilizes the reliability index. The expression



Figure 3 Conveational Monte Carlo methods

for the reliability index was derived based on the special case
where the safety margin serves as the limit state function. More
generally, other cxpressions for 8 can be derived by adopting
different limit state functions. However, in general, the straight-
forward relationship between the reliability index and the
probability of failure expressed above no longer holds. If the
limit state function is a non-linear function of the design variables
or the design variables are not normally distributed, then equation

(46) will not hold. Yet for either case there are approximations '

that can be utilized which yield good results, provided the limit
state functions and the design variables are suitably restricted.

Before the discussion on how the relationship between
the probability of failure and the reliability index can be
approximated, a geometric interpretation of the reliability index
is given using the simple definition of the safety margin expressed
in equation (38). If R and L arc normally distributed, they can
be transformed to standard normal variables. By definition the
transformed resistance variable is

R = Xtz (48)

and the transformed load variable is

. @9)

Thus the resistance variable can be expressed as
R=R3,+py 1)
and the load variable can be expressed as
L=L3, +p, (51)

In terms of the transformed random variables the safety margin
becomes

M=8,R -8, L' +(pg-1;) (52)

Now the reliability index can be interpreted as the shortest
distance from the origin in the transformed variable space to the
failure surface, which is defined by M. This is depicted in
Figure 4 where the failure surface associated with this particular
safety margin is shown in both the original and the transformed
design varisble space. The point on the failure surface that is



Figure 4 a) Failure surface in the standard variable space. b) Failure surface and MPP in the transformed variable space

nearest to the origin is referred to as the most probable point
(MPP) in structural reliability literature. The reader can casily
verify that equation (45) can be derived from the geometry
presented in Figure 4. This last figure is important. If

¢ the limit state function can be linearized, and

e the design variables can be transformed to standard
normal variables,

then 8 can be determined using analytic geometry concepts.
Once 8 has been found, the probability of failure is calculated
directly using equation (46).

Finally, before discussing approximate methods
associated with linearizing the limit state function and
normalizing the design variables, a brief discussion is necessary
concerning the extcnsion of equation (46) to N design variables.
The preceding discussion focused on two independent, normally
distributed, random variables. Equation (47) holds for N
independent, normally distributed random variables, if the Limit
state function (g) is a linear function of the random variables.
Under these circumstances

p =2t (3

6l

where
N
£-1-Tay, S
i=1
B, = Elg] EL)
and X
37 = VAR[g] (56)

Note that g; is the coefficient of the I'th term of the limit state
function and depends on the particular limit statc function
utilized.

THE HASOFER-LIND APPROXIMATION

Hasofer and Lind (1974) proposed a technique
(identified here as the H-L method) that approximates the failure
surface for those cases where the limit state function is not a
linear combination of the design variables. The failure surface
(2 hyper-surface in the N-dimensional design variable space) is
approximated by a hyper-planc tangent to the failure surface at



the MPP (see Figure 4). This approximation is accomplished by
utilizing the first term of a Taylor serics expansion of the limit
state function at the MPP. Thus

N
8(z,) = 8(z)) + Y, (gz’-] (z - %) 57
i=1 1)

where z_ is the vector of standard normal variables which are
related to the design variables in the following manner

(Y. = l‘y.)
6'

L= (59)

Here z.” is the vector representing the location of the MPP, and
the asterisk associated with the partial derivative indicates the
vector and the associated derivatives are being evaluated at the
MPP.

Since the Limit state function is approximated by the
first term of a Taylor series expansion, the H-L method is
referred to as a "first order” method. Keep in mind that the H-L
approximation will be exact if the design variables are normally
distributed, and the true limit state function is lincar. The reader
should question how good the approximation is if the actual limit
state function is not linear (a hyper-plane) in the transformed
standard normal variable space. The joint probability density
function tends to decay exponentially with a relative increase in
distance from the mean (i.e., the "peak” of the joint PDF in
Figure 2). For large values of 8 (i.c., low probability of failure)
the main contribution to the probability integral, i.c., equation
(28), usually comes from regions near the MPP, since the
relevant functional values of the joint PDF will assume their
largest values in the near vicinity of the MPP. Therefore,
provided that the actual limit state surface is well-behaved and
does not exhibit significant deviations from the tangent hyper-
plane approximation in the neighborhood of the MPP, a
reasonably accurate estimate of the actual probability of failure
(Pp can still be obtained from equation (46) by this first order
approximation.

Since S represents the shortest distance from the origin
to the failure surface in standard normal variable space, and the
location of the MPP is not known a priori, a scarch algorithm
must be employed. An optimization method making use of
Lagrange multipliers is utilized here. The following steps
represent the details of this search algorithm:

(1)  Assume initial values for the normal design variables
¥/, and transform these values to standard normal
values z;" using equation (58).

(2) Transform the limit state function g(y, ) to g(z, ) using
equation (57). This requires the evaluation of the

partial derivatives at the corresponding values of z,”.

(3) Evaluate the Lagrange multipliers

BT

(4) Assemble the vector z, using

g ap (60

where 8 is unknown at this point.

(5) Substitute z,” into the following expression
g(z) =0 (61)

and solve for 8. Note that this last expression is a
scalar valued function. Hence one equation is solved
for one unknown ().

(6) With 8 known, update values of z,” and repeat steps (3)
to (5) until a suitable convergence criterion is met.
This convergence criterion can be casily related to the
change in 8 from one iteration to the next.

The geometric interpretation of the algorithm above is
shown in Figure 5. Note that the rate of convergence for the H-
L algorithm will depend on the following

e the nature of the true limit state function,

e the starting point,

o  the characteristics of the random variables, and
e the correlation between the random variables.

These issues have been discussed thoroughly in the open literature
and will not be revisited here.

THE RACKWITZ-FIESSLER APPROXIMATION

If the random variables that are utilized in the limit state
function are not normally distributed, a second approximation
must be employed. Based on a concept suggested by Paloheimo
and Hannus (1974), Rackwitz and Fiessler (1978) proposed &
modification of the FPI method to account for design variables



= | 92

Linearized
Failure Surface

with non-normal distributions. The technique (referred to here
as the R-F method) converts non-normal random variables into
standard normal variables by first equating the CDFs of the
standard normal and non-normal distributions, i.c.,

«_ R
) :Y. - FrOD (63)

8y

d

Here Fy, represents the non-normal cumulative distribution
function (e.g., the two-parameter Weibull distribution) and & is
the standard normal cumulative distribution function. In addition
the PDFs of the standard normal and non-normal distributions are
equated leading to the expression

. 4
b /R
._1.; 6|2 n" = 11,00 (64
by b

Here fy, represents the non-normal probability density function
and ¢ is thc standard normal probability density function. These
last two expressions must be cvaluated at every approximated
MPP. The character N signifies the normal distribution in both

Figure 5 Schematic of the Hasofer-Lind approximation where a non-linear failure surface is approximated by a
: lincar tangent hyper-plane

expressions. Thus, the equivalent nonml mean ( u,ﬁ) and
equivalent normal standard deviation (6 ) of non-normal
variables can be derived from equauons (62) and (63).
Specifically

uyt =y - 8, @ [Fr 0] (65)
and .
O(F
5t - $L® 7 (Fy, 001 )
15,00
SUMMARY

An overview is given of engineering concepts and
computational algorithms which have been developed cnabling
probabilistic design approaches to structural analysis.
Probabilistic design approaches are shown to have evolved as &
natural extension of traditional deterministic design approaches.

The well established Weibull analysis approach,
commonly utilized for the design of components fabricated of



brittle materials such as ceramics, is shown to be a special case
of the more gencral probabilistic design problem formulation.
Substantial developments have occurred to extend the Weibull
analysis approach to more complex failure mechanisms and for
the approximate numerical solution of more realistic component
design problems using finite element analysis techniques. These
cfforts have produced comprehensive design tools, such as is
embodied in the CARES family of software developed at NASA
Lewis Research Center.

In the more general case, much of the development
effort has focused on efficient numerical algorithms to achicve
accurate approximate solutions of probabilistic design problems
involving complex and nonlinear failure or limit state functions
and design parameters described by non-normal distributions.
Scveral specific algorithms are described which are extensions of
the fast probability integration approaches originally developedby
Hasofer and Lind, and Rackwitz and Feissler, as well as
extensions of Monte Carlo simulation approaches allowing for
more selective sampling. Again, these cfforts have produced
comprehensive design tools, such as is embodied in the NESSUS
family of software developed at Southwest Research Institute
under the sponsorship of NASA Lewis Research Center.

The various methods presented provide a quantitative
basis to account for design uncertainties inherent to physical
systems. The ultimate benefit of probabilistic design approaches
is a more rational basis for making design decisions that balance
component or system efficiency with reliability or safety. This
benefit is especially important in the design of high-performance
and/or life-critical systems.
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ABSTRACT: High temperature slow crack growth of a hot-pressed silicon
nitride (NCX 34) was determined at temperatures of 1200 and 1300°C in
air. Three different testing methods were utilized: dynamic and static
fatigue with bend specimens, and static fatigue with dog-bone-shaped
tens{le specimens. Good agreement exists between the dynamic and static
fatigue results under bending. However, fatigue susceptibility in
uniaxial tensile loading was greater than in bending. This result
suggests that high temperature fatigue behavior should be measured with
a variety of specimen configuration and loading cycles so that adequate
lifetime prediction parameters are obtained.

KEYWORDS: silicon nitride, slow crack growth, dynamic fatigue, static
fatigue, tensile fatigue, lifetime prediction

Silicon nitride ceramics are candidate materials for high
temperature structural applications in advanced heat engines and heat
recovery systems. The major limitation of this materia in high
temperature applications is fatigue-associated failure, where slow crack
growth of inherent defects or flaws can occur until a critical size for
catastrophic failure is reached. Therefore, it is very important to
evaluate fatigue behavior with specified loading condition so that
accurate lifetime prediction of ceramic components is ensured.

There are several ways of determining fatigue parameters.
Dynamic, static or cyclic fatigue loading can be applied to smooth
specimens with inherent flaws or to precracked fracture mechanics
specimens in which the crack veloclcz measurements are made directly. A
conslderable number of studies have been carried out to characterize
fatigue behavior of silicon nitride ceramics using the testing methods
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mentioned above [l-7]. Although the reported results agree to some
degree, there remains uncertainty and disagreement among the testing
methodologies, depending on test materials and even on researchers.

In this study, high temperature fatigue behavior of a hot-pressed
silicon nitride was determined at 1200 and 1300°C in air using three
different loading conditions: dynamic and static loading for flexure
beam specimens and static loading for dog-bone-shaped uniaxial tensile
specimens. Finite element analysis was carried out for the tensile
specimens to obtain stress distributions and to assure the
appropriateness of the ;gecimen configurations designed. The material
was chosen because it exhibited moderate fatigue susceptibilities at
high temperatures, enabling the comparison of fatigue lifetime
prediction results from various testing methods. This material has been
previousl{ used under bending loading to study high-temperature
structural reliabilicy [8], onﬁ term environmental exposure [9] and
effects of oxidation on strength distribution []10].

EXPERIMENTAL METHOD
ateria

The materia] used in this study was a hot-pressed silicon nitride
containing 8% Y,0,;°. The room temperature basic physical and mechanical
properties of the material are shown in Table 1. The material exhibited
a slightly bimodal grain structure of large elongated and fine equiaxed
grains. This bimodal grain structure resulted in a high fracture
toughness (K. = 7 MPa/m) as well as a rising R-curve [ll], typical to
most in-situ toughened silicon nitrides with elongated grain structure.

Test Procedures _

Dynamic and static fatigue testing for the as-machined flexure
beam specimens was conducted in ambient air at 1200 and 1300°C using a
SiC four-point bend fixture in an electromechanical testing machine.
The inner and outer span of the test fixture were 10 mm and 30 mm,
respectively. The nominal dimensions of the rectangular test specimens
were 3 mm by 7 mm by 35 mm, respectively, in height, width, and length.
Four loading rates of 4.2 to 4200 N/min were used in the dynamic fatigue

TABLE 1-- a
tride at room te (11,12]
Young's1 Hardness’ Density’ Fracture , RT
Hodulu;, Hfgi?) (g/cT ) 2:?52273; St:;;g;h
E (GPa (11 m a
{11] [11) [12]
296 14.5%0.6 3.37 6.90+0.56 805+50
Notes:

1. By strain gaging; 2. By Vickers microhardness indenter;

3. By buoyanc
(width) by 3.

1y

mm- inner and outer spans (12].

# NCX 34, fabrlcated In 1979, Norton Co. Northboro, MA.

method; 4. By SEPB method; 5. With specimens of 6.35 mm
mm (height) using a four-point fixture with 9.525/19.05
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testing, resultinf in the corresponding stressing rates of 2 to 2000
MPa/min. Stress levels applied in the static fatigue tests were 250 to
500’ MPa at 1200°C, and 75 to 400 MPa at 1300°C, respectively. The
number of the test specimens in the dynamic fatigue testing was four at
each loading rate per temperature; whereas, the total number of the test
specimens in the static fatigue testing was 14 and 21, respectively, at
1200 and 1300°C. Each test specimen was preloaded with 20 N to malntain
good alignment relative to the test fixture, and held at the test
temperature for 20 min prior to testing.

The tensile fatigue behavior was investigated at temperatures of
1200 and 1300°C in air. The dog-bone-shaped tensile test specimens,
similar to those used in creep testing measurements by Wiederhorn et al.
(13], were utilized for this testin{. A test specimen with strain gages
attached is shown in Fig. 1. The dimensions of the test specimens were
2.5 mm by 2.5 mm by 20 mm in cross section and gage length, .
respectively. To minimize the degree of misalignment of the tensile
test specimen, the loading pin holes of each test specimen were tapered
toward the center so that load was applied to the center of the
specimen, as sufgested by Carroll et al [l4]. With this tapered pin
hole configuration and careful specimen mounting, it was possible to
achieve less than two percent misalignment at a stress of 150 MPa.

The tensile specimens were preloaded with 35 N at room temperature
and heated to the test temperature. Each test specimen was kept at the
test temperature for about 20 min prior to applying the full test load.
Ehe testing was conducted in dead weight creep machines. A total of 14
test specimens were used at 1200°C with a nominal applied stress range
of 80 to 200 MPa; whereas, at 1300°C a total of 15 were used with
applied stresses from 50 to 100 MPa. A finite element analysis of the
test specimen has shown that high stress, similar in ma nitude to those
occurring in the gage section, occurred around the loading pin hole due
to the stress concentration. Hence, particular care was taken to
minimize the pos;ibilit{ of machining-induced damage around the tapered
pin-hole. Every pin hole was carefull diamond polished with a
specially designed hand tool. Also, all the surfaces and edges of each
as-machined test specimen were carefully hand-sanded to minimize any
machining damage.

FIG. 1--A dog-bone-shaped tensile test specimen with strain gages
attached.
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Einice Element Analysis of Tensile Specimens

The finite element model for the tensile test specimen consisted
of 1040 HEX/20 elements with a total of 5747 nodes. The model was
analyzed using the MSC/NASTRAN finite element package. Linear static
analysis was employed, with one eighth symmetry for simplicity. The
specimen was loaded such that a specified uniform uniaxial tensile
stress was present in the gage section. Three FORCE cards were used to
agply the load. The load was applied to the one side of one element
through the thickness. Since HEX/20 elements were used for the
analysis, the load was divided into four parts. The outer nodes of the
element received one part of the load each and the center node received
two parts of the load. This load scheme was used to remain consistent
with the element shape function formulations employed for the 20 node
element {15].

Typical stress contours thus obtained are shown in Fii. 2, where
o, (principal stress along the specimen length) is plotted for one
eighth symmetry of the specimen. This figure indicates that the maximum
stress i{s present both at the gage section and at the pin hole (in the
nine o’clock direction) due to tge stress concentration. Note that the
stresses in the neck region are always lower than that occurring in the
gage section. Although the maximum stress occurs at the pin hole as
well as at the gage section, the probability of failure is considerably
higher at the gage section than at the pin hole since the volume or
surface area stressed under the maximum stress is much greater at the
gage section than at the pin hole. However, every attempt was made to
minimize machining-induced damage.
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FIG. 2--Contours of principal stress along specimen length
obtained from finite element analysis (one eighth symmetry).
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RESULTS AND DISCUSSION

For most ceramics and glasses, slow crack growth can be expressed
by the empirical relation

v = A [K/K]" e}

where A and n are the fatigue parameters associated with material and
environment, K, is the mode 1 stress intensity factor, and K. is
fracture toughness. For dynamic fatigue testing which employs constant
loading rate (P) or constant stressing rate (&), the corresponding
fatigue strength, o, is expressed [155

o = [B (n+1) sIn-Z]“lrw‘l b1mﬂ (2)

where B = 2/[AX’(n-2)Kc"z] with Y being the crack geometry factor and §
is the inert strength. The fatigue constants n, B and A can be obtained
from the intercept and slope, respectively, of the linear fit of Log o
versus Log . In the same way, for static fatigue testing where
constant stress is applied, the time to failure (t,) can be derived
sasily in terms of applied stress (o) as follows [l]

ty = [B S™) 0" (3)

_ikewise, static fatigue parameters B and n can be evaluated by a linear
tegression analysis o the static fatigue curve when time to failure
Log t,) is plotted against applied stress (Log o). However, it should
le noted that there are several statistical approaches to estimate the
Jatigue parameters from dynamic and static fatigue data [17].

The relationship in fatigue life between dynamic and static
fatigue is (18]

ty = ty/(ntl) (4)

where t, is the time to failure in dynamic fatigue, which corresponds to
ty = 0/6. By substituting t, in Eq. (4) into Eq. (3) with ¢ = g, the
dynamic fatigue curve can be converted into an equivalent static fatigue
curve as follows:

ty = a of (5)

where a 1s the value associated with B, n and §;.

Dynamic and Static Fatigue in Bending

A summary of the dynamic fatigue results at 1200 and 1300°C in
air is presented in Fig. 3. The solid lines in the figure represent the
best-fit lines based on Eq. (2). The decrease in fatigue stren, th witch
decreasing stressing rate, which represents fatigue susceptibility, was
evident at both temgeracutes. The fatigue parameter (n) was determined
to be n = 16.0 and 15.0 at 1200 and 1300°C, respectively, from a linear
regression of Log ¢y versus log &. Fractographic analysis of the
failure surfaces revealed the presence of slow crack &rowch zones at the
lower stressing rates, while no appreciable slow crac growth was
obtained at higher stress rates.

The results obtained from the static fatigue tests at 1200 and
1300°C in air are shown in Fig. 4. The arrow marks in the figure
represent the specimens that did not break before about 600 hr. Also,
the solid lines in the figure represent the best-fit lines based on Eq.
(3). The fatigue constant n was evaluated to be n = 20.7 and 15.0 at
1200 and 1300°C, respectively. The fatigue constant n = 15-21 thus
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FIG. 3--Results of dynamic fatigue testing in bending of NCX 34 silicon
nitride at 1200 and 1300°C in air.
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FIG. 4--Results of static fatigue testing in bending of NCX 34 silicon
nitride at 1200 and 1300°C in air.

- - ined

d agrees reasonably well with the value of n = 15-16 determ
%Bﬁzlgﬁe ggnamic fatigue {esting. A value of n = 12 was reported .
previously, obtained %ﬁom static fatigue with MOR bars at 1400°C in air

(19].
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It is interesting to compare the static fatigue results obtained
in this study with those obtained by previous researchers. Particularly
at 1200°C, the stress rupture data of Quinn [9] is very different from
those reported in this study. Similarly, Wiederhorn and Tighe (8}
observed almost no failure at 1200°C at 400 MPa, even with specimen
containing Knoop indents. The data in Fig. 4, however, indicates that
they all should have failed at about 1000 seconds. This is due to the
fact that there are billet to billet variations in the material, as
pointed out previously [8]. Similarly, Quinn {3] reported bands of
nonuniform material which cracked and crept differently. Thus, NCX 34
silicon nitride seems to be a such a material that some subtle chemistry
or microstructural variation leads to radically different behavior.

It is important to note that appreciable creep deformation
occurred for the specimens subjected at 1300°C to the lowest stressing
rate in the dynamic fatigue testing and to the lowest applied stress in
the static fatigue testing. Fracture surfaces of the specimens tested
at different stressing rates or applied stresses showed that slow crack
growth zones dominate failure as stressing rate or applied stress
decreases. One complication evident from the fractography is the shape
of the crack developed, especially in the sgecimens subjected to long
time to failure. The cracks, though initially half-pennies in
configuration, develop into corner and straight-through cracks as the
crack size apgroaches the specimen size, as shown in Fig. 5. This may
affect the values of the measured fatigue parameters, due to changes in
crack geometry and net section stress. Further, enhanced creep at high
temperature can result in neutral axis shift attributed to asymmetric
creep behavior between the compression and tension sides of a flexure
beam specimen [20]. This neutral axis shift may affect the stress
distribution and possibly change the fatigue parameters.

Statjc Fatigue in Tension

Some of the uniaxial tensile specimens failed from the loading pin
holes. This undesirable pin-hole failure was found to be associated
with machining damage, which was minimized later by careful hand
polishing witg diamond compound around the tapered pin holes. Another
undesirable failure associated with machining damage occurred at the
intersection of the straight fage section and the radius of curvature of
the neck region, where a small surface discontinuity (damage) exisced.
The typical gage section and intersection failures are shown in Fii. 6.
This neck region failure was also minimized by careful hand polishing
around the intersections with SiC sand paper.

FIG. 5--Fracture surface of a specimen subjected to static fatigue in
bending at 1300°C; ¢ = 190 MPa and t, = 456 hr.
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(a)

(®)

FIG. 6--Fractured uniaxial tensile test specimens: (a) desirable gage
section failure; (b) undesirable neck region failure.
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FIG. 7--Results of static fatigue testing in uniaxial tension of NCX 34
silicon nitride at 1200 and 1300°C in air.

1200
A summary of the uniaxfal tensile fatigue results obtained at

and 1300°C 1nrzir is presented in Fig. 7. The solid lines in thi.fﬁgur;
represent the best-fit lines obtained by a linear regression a?? ysti;:
Log t, versus Log o. It should be noted that specimens failed from he,
pin holes and neck region (marked with vertical arrows) weref:xclude n
the regression analysis. The horizontal arrow marks inGSEeh zu;ﬁe
represent the test specimens that did not break beforelo p §‘1200 and
fatlgue parameter n was determined to be n = 10.0 and.° i a 1200
1300°C, respectively. This fatigue parameter of n = 10 is i?me At in
lower than that (n = 15-21) from the dynamic and static fat guz nez log
with the flexure beam specimens. By contrast, the parameter o
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(a)

Fig. 8--Fracture surfaces of specimens subjected to static fatigue in
unlax{al tension at 1300°C: (a) ¢ = 100 MPa; t, = 42 min;
(b) o = S0 MPa; t, = 682 h.

determined for the smooth (as-machined) sYecimens is higher than the
value of n = 5.2 obtained for the uniaxial tensile specimens with Knoop
indent cracks by Henager and Jones (21].

At high applied stress, failure was usually (but not alwvays
clearly) associated with slow crack growth; whereas, at lower applied
stress creep-induced failure was dominant at both temperatures.
Multiple creep crack formation in the gage sectlon was typically
observed for the specimens failed at lower stresses. Fig. 8 shows the
fracture surfaces of specimens failed at 1300°C at two different applied
stresses of o = 100 and 50 MPa. The formation of a dominant crack is
evident for the specimen failed at 100 MPa with t, = 42 min (volume
failure). However, a clear fracture origin was not readily discernable
from the specimen failed at 50 MPa with t, = 682 hr, suggesting that
crack coalescence associated with creep damage caused specimen failure.

mparis L

Comparison of dynamic and static fatigue behavior in bending can
be evaluated by converting the dynamic fatigue data into a corresponding
static fatigue curve via Eqs. (4 and (5). The resulting plots are
shown in Fig. 9, where the converted dynamic fatiﬁue data are compared
with the static fatigue data. Also included in the figure are the data
obtained from the uniaxial tensile fatigue testing.

Overall agreement between dynamic and static fatigue in bending is
reasonably good, notwithstanding a little variation, es ecially at
1200°C. Therefore, based on these results it is possible to obtain slow
crack growth parameters from either static or dynamic fatigue testing
techniques, as observed previously for Cerallo¥ 147A silicon nitride
(22). The d ic fatigue testing is preferable since the time to
failure is shorter in dynamic fatigue than in static fatigue. Care
should be taken when an extrapolation based on the dynamic fatigue data
is ?ade to predict slow crack growth behavior in the low applied stress
regime.
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FIG. 9--Comparison of fatigue life curves obtained from dynamic and
static bend fatigue and tensile static fatigue for NCX 34 silicon
nitride at 1200 and 1300°C in air.

The difference between the tensile static fatigue and the dynamic
or static bend fatigue is much larger as seen in Fig. 9. The difference
in fatigue strength between the tensile and bend loading is probably due
to the difference in effective volume or surface area between the two
specimen configurations (dog-bone-shaped tensile specimens and flexure
beam specimens). The ratio of bending strength to tensile strength can
be calculated using the following equation

01/0g = [Aue/Aur]™ or
= [Vew/Verr]™ (6)

where A, and V,, are effective surface area and effective volume,
respectively, and m is the Weibull modulus. Since the Weibull modulus
at 1200 and 1300°C were not known, a value of m = 10 was arbitrarily
chosen. By assuming that failure {s controlled by vqlume-associated
failure, and taking V,m = 11.28 mm" and V,; = 62.5 mm’ based on the
fixture and specimen geometry, a value of o;/0, = 0.786 is obtained.
This ratio of 0.786 1s a reasonable estimate at 1200°C, but a poor one
at 1300°C since the ratios of the tensile fatigue strength to the bend
fatigue strength (dynamic or static) at t, = 1 s (assuming little
fatigue) are 0.7 and 0.4, respectively.

Using the experimental data and the appropriate equation and
assuming K. = 5 MPa/m at 1200 to 1300°C, the fatigue parameter A was
calculated and tabulated in Table 2. By using the A value, the fatigue
life curve (Fig. 9) was converted into a crack velocity curve, Fig. 10,
vwhere crack vefocity is glotted, based on Eq. (1), as a function of

normalized stress intensity factor K/K.. The crack velocity curve

obtained at 1300°C from the uniaxial tensile fatigue with Knoop indent
crack [18] was also included in the figure for comparison. As already
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Loading and Temp n B A
geometry °C) (MPa‘min) (m/min)
Dynamic in 1200 16.0 14.702 0.194
Bending 1300 15.0 10.269 0.300
Static in 1200 20.7 11.148 0.191
Bending 1300 15.0 11.697 0.262
Static in 1200 10.0 16.242 0.319
Tension 1300 10.6 11.126 0.417

:‘1' Static in Tension 1300 5.2 - -
with Indents (21]

1 O0
NCX 34 Sk N,

1 02 | #1 1200°C; Oyn. Fat. in bend
#2 1300°C; Oyn. Fat. in bend
#3 1200°C; Stat. Fat. Inbend
#4 1300°C; Stat. Fat. in bend
#5 1200°C; Stat. Fat. in tenslon
10 |~ #6 1300°C; Stat. Fat. in tension
#7 1300°C; Stat. Fat. In tension
(Indent crack; Henager 1968) /’
s

CRACK VELOCITY, v [m/min)

-6
10 |-
68
10 4 /
6 4 -/
! 3
130 1 1 P 11111
0.1 0.3 05 07 1.0
K/Ke

FIG. 10--Summary of crack velocity curves obtained from different
testing methods for NCX 34 silicon nitride at 1200 and 1300°C in air.

shown in the fatigue life curve (Fig. 9), there i{s reasonably good
a%reement between the dynamic and static fatigue in bending, but a large
d scregancy between the uniaxial tension and bend fatigue data. Fig. 0
also shows that in uniaxial tensile loading the fatigue susceptibilicy
of the indent cracks was much greater than that of the smooth (as-
machined) specimens, as observed previously for the GN-10 silicon
nitride material at 1200°C [3].
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The difference in fatigue susceptibility of smooth and Knoop
precracked specimens may be due to the nature of the cracks used or the
method of parameter estimation: The dynamic and static methods determine
garameters empirically from stress and time-to-failure data that results

rom inherent defects that develop into cracks, grow and cause failure;
whereas fracture mechanics methods, such as the Knoop indent, attempt to
directly observe and track the length of an initially sharp, well
developed crack.

These results indicate that there is no unique fatigue testing
methodology, 1mp1y1n§ that a variety of fatigue loading cycles, specimen
configurations and flaw systems should be used to thoroughl
characterize fatigue behavior of ceramic components that will have
multiaxial stresses. An important result obtained from this fatigue
testing study is that the dog-bone-shaped tensile specimens that have
been used primarily in creep studies of ceramics can be applied to high-
temperature tensile fatigue 1ife (stress rupture) testing.

CONCLUSIONS

(1). The high-temperature fatigue parameters for this material
determined from dynamic and static fatigue bend data are in good
agreement. Fatigue parameters were n = 15 to 20.

(2). A discrepancy exists between bend (dynamic or static) fatigue and
uniaxial tensile fatigue, resulting in more fatigue susceptibility for
uniaxial tension. The discrepancy is presumably due to creep associated
mechanism, different in bending and tension primarily attributed to
neutral axis shift occurring in the bend specimens.

(3). Creep-associated failure became dominant as applied stress or
stressinf rate decreased. In this case, neutral axis shift via
asymmetric creep deformation may have affected the stress distribution
of flexure specimens, and presumably changed the fatigue parameters,
which were based on an elastic stress solution. The use of tensile
specimens is thus strongly preferable in this case.

(4). Fatigue behavior should be evaluated with a variety of stress
states, loading cycles and flaw (inherent or artificial) configurations
to ensure accurate life prediction parameters.
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A Viscop

lastic Constitutive

Theory for Monolithic
Ceramics—|
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This paper, which is the first of two in a series, provides an overview of a viscoplastic
constitutive model tnat accounts for time-dependent material deformation ( e.g., creep.

stress relaxation, etc.) in monolithic ceramics. Using continuum principles of engi-
neering mechanics, the complete theory is derived from a scalar dissipative potential

S. F. Duffy

Cteveland State University,
Cleveland, OH 44115

function first proposed by Robinson (1978), and later utilized by Duffy (1988).
Derivations based on a flow potensial function provide an assurance that the inelastic
boundary value problem is well posed. and solutions obtained are unique. The specific

formulation used here for the threshold function (a component of the flow potential
Junction) was originally proposed by Willam and Wamke ( 1975) in order to formu-
late constitutive equations for time-independent classical plasticity behavior observed
in cement and unreinforced concrete. Here constitutive equations formulated for the
flow law (strain rate) and evolutionary law employ stress invariants 1o define the
functional dependence on the Cauchy stress and a tensorial state variable. This
particular formulation of the viscoplastic model exhibits a sensitiviry to hydrostatic
stress, and allows different behavior in tension and compression.

Introduction

With increasing use of ceramic materials in high-temperature
applications, the need arises to predict thermomechanical be-
havior accurately. This paper will focus on inelastic deformation
behavior associated with these service conditions. A number of
constitutive theories for materials that exhibit sensitivity to the
hydrostatic component of stress have been proposed that charac-
terize deformation using time-i ndent classical plasticity
as 2 foundation. Corapcioglu and Uz (1978) reviewed several
of these theories by focusing on the proposed form of the indi-
vidual yield function. The review includes the works of Kuhn
and Downey (1971). Shima and Oyane (1976) and Green
(1972). Not included is the work by Gurson (1977) who not
only developed yield criteria and a flow rule, but also discussed
the role of void nucleation. Subsequent work by Mear and
Hutchinson (1985) extended Gurson's work to include kine-
matic hardening of the yield surfaces. Although the previously
mentioned theories admit a dependence on the hydrostatic com-
pouent of stress, none of these theories allow different behavior
in tension and compression. Willam and Wamke (1975) pro-
posed a yield criterion for concrete that admits a dependence
on the hydrostatic component of stress and explicitly allows
different material responses in tension and compression. Several
formulations of their model exist, i.c.. a three-parameter formu-
lation and a five-parameter formulation. For simplicity the work
presented here builds on the three-parameter formulation.

The aforementioned theories are somewhat lacking in that
they are unable to capture creep, relaxation, and rate-sensitive
phenomena exhibited by ceramic materials at high temperature.
A noted exception is the recent work by Ding et al. (1994). as
well as the work by White and Hazime ( 1995). Another excep-
tion is a paper by Liu et al. (1997), which is an extension of
the work presented by Ding and co-workers. As these authors
point out, when subjected to elevated service temperatures, ce-
ramic materials exhibit complex thermomechanical behavior
that is inherently time dependent, and hereditary in the sense
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that current behavior depends not only on current conditions,
but also on thermomechanical history. This paper presents the
formulation of a macroscopic continuum theory that captures
these time-dependent phenomena. Specifically. the overview
contained in this paper focuses on the complete multiaxial deri-
vation of the constitutive model, and examines the attending
geometric implications whea the Willam-Warmke (1975) yield
function is utilized as a scalar threshold function. A second
paper, which will appear shortly, examines specific time-depen-
dent stress—strain behavior that can be modeled with the consti-
tutive relationship presented in this article. No attempt is made
bere to assess the accuracy of the model in comparison 1o exper-
iment. A quantitative assessment is reserved for a later date,
after the material constants have been suitably characterized for
a specific ceramic material. The quantitative assessment could
easily dovetail with the nascent efforts of White and co-workers.

Flow Potential

Early work in the field of metal plasticity indicated that in-
elastic deformations are essentially unaffected by hydrostatic
stress. This is not the case for ceramic-based material systems,
unless the ceramic is fully dense. The theory presented here
allows for fully dense material behavior as a limiting case. In
addition, as Chuang and Duffy ( 1994 ) point out, ceramic mate-
rials exhibit different time-dependent behavior in tension and
compression. Thus inelastic deformation models for ceramics
must be constructed in a fashion that admits sensitivity to hydro-
static stress and differing behavior in tension and compression.
This will be accomplished here by developing an extension of
a J, model first proposed by Robinson (1978) and later ex-
tended to sintered powder metals by Duffy (1988). Although
the viscoplastic model presented by Duffy (1988) admitted a
sensitivity to hydrostatic stress, it did not allow for different
material behavior in tension and compression. .

The complete theory is derivable from a scalar dissipative
potential function identified here as . Under isothermal condi-
tions this function is dependent upon the applied stress (o)
and internal state variable (ay). i-e..

Q= Q(U,,. aq) ()
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The stress dependence for a J; plasticity model or a J; vis-
_ coplasticity model is usually stipulated in terms of the deviatoric
components of the applied stress, ie.,

Sy = oy — (1/3)audy 2)
and a deviatoric state variable
a; = ay; ~ (1’3)&&6,, (3)

For the viscoplasticity model presented here these deviatonic
tensors are incorporated, along with the effective stress

Ny =0y— @ G
and an effective deviatoric stress, identified as
Z,, = S,,' - au (5)

Both tensors, i.c.. n; and I, are utilized for notational coave-
nience.

The potential nature of Q2 is exhibited by the manner in which
the flow and evolutionary laws are derived. The flow law is
derived from 0 by taking the partial derivative with respect to
the applied stress, i.c..

=52
gy

¢, (6)

The adoption of a flow potential and the concept of normality,
as expressed in Eq. (6), were introduced by Rice (1970). In
his work the relationship above was established using thermody-
namic arguments. The authors wish to point out that Eq. (6)
holds for each individual inelastic state.

The evolutionary law is similarly derived from the flow po-
tential. The rate of change of the internal stress is expressed as

4

where h is a scalar function of the inelastic state variable (i.e.,
the internal stress) only. Using arguments similar to Rice’s,

Ponter and Leckie (1976) have demonstrated the appropriate-
ness of this type of evolutionary law.

(7

-

To give the flow potential a specific form, the following
integral format propased by Robinson (1978) is adopted:

Q= x*[(i—) f F*dF + (%) f G"dG] ®)

where s, R. H. and X are material constants. In this formula-
tica u is a viscosity constant, H is a hardening constant, n
and m are unitless exponents, and R is associated with recov-
ery. The octahedral threshold shear stress X appearing in Eq.
(8) is generally considered a scalar state variable that ac-
counts for isotropic hardening (or softening ). However, since
isotropic hardening is often negligible at high homologous
temperatures (=0.5), to a first approximation X is taken to
be a constant for metals. This assumption will be adopted in
the present work regarding ceramic materials. The reader is
directed to the work by Janosik (1998) for specific details
regarding the experimental test matrix needed to characterize
these parameters.

Several of the quantities identified as material constants in
the theory are strongly temperature dependent in a noniso-
thermal environment. However, for simplicity. the present
work is restricted to isothermal conditions. A paper by Rob-
inson and Swindeman (1982) provides the approach by
which an extension can be made to nonisothermal conditions.
The present article concentrates on representing the complex-
ities associated with establishing an inelastic constitutive
model that will satisfy the assumprions stipulated herein for
ceramic materials. ,

The dependence upon the effective stress I, and the devia-
tocic internal stress a,, are introduced through the scalar func-
tions

F= F(Z,j. ny) (9)

and

G = G(a,. a,) (10)

Inclusion of n, and &, will account for sensitivity to hydrostatic
stress. The concept of a threshold function was introduced by
Bingham (1922) and later generalized by Hohenemser and
Prager (1932). Correspondingly, F will be referred to as a

Nomenclature

a; = deviatoric component of the
state variable tensor
B = constant (in general polyno-

R = recovery constant
r = position vector in [1-plane repre-
senting deviatoric component of a

r=3.14159 ...
p = Willam-Wamke hydrostatic
threshold parameter

mial form of F) stress state I, = effective deviatoric stress ten-
C = coefficient used to simplify S, = deviatoric compouent of applied sor
expressions for flow and stress tensor o = threshold stress

evolutionary laws
F = Bingham-Prager threshoid
function
G = scalar suate function
H = hardening counstant
h = scalar hardening function
dependent on the inelastic
state variable
I1,, J1. J; = invariants associated with
the Willam-Wamke thresh-
old functon F
%, k., } = invariants associated with
the scalar function G
K = octahedral threshold shear
stress
m, n = unitless exponents
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u, v = component of position vector r
Y = normalized threshold stress
@, = internal state variable tensor
&, = state variable evolutionary law
§; = Kronecker delta
¢; = flow law (inelastic strain rac)
ny = cffective sress tensor
6 = angle of similitude measured in
the [I-plane
\ = scalar function in general polyno-
mial form of F; dependent on J,
through the angle of similitude 8
4 = viscosity constant
[1 = plane perpendicular to the hydro-
static stress line in the Haigh—
Westergaard stress space (i.c.. the
[1-plane)

o, = applied Cauchy stress tensor
Q) = scalar dissipative potential
function
" = denotes parameters associated
with scalar function F
" = denotes parameters associated
with scalar function G

T = rate

Subscripts
bc = equal biaxial compressive
¢ = compressive
i. j. k = tensorial components
m, n = tensonial components
q. u. v = tensorial components
t = tensile
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Bingham - Prager threshold function. Inelastic deformatioa oc-
curs onJy for those stress states where

F(Z,,n) >0 (11)

For frame indifference, the scalar functions F and G (and
hence ) must be form invariant under all proper orthogonal
transformations. This condition is ensured if the functions de-
pend only on the principal invariants of I, a;. Ny, and ay, that
is

FeFl, L. 1) (12)

and
G=G(% k&) (13)

where

L=, (14)
Jy = (DEE, (15)
Jy = (DIZpka (16)

and
9, = ay (17)
% = (Pagay (18)
= (})ayauu (19)

These scalar quantities are elements of what is known in invari-
ant theory as an integrity basis for the functions F and G.

A three parameter flow criterion proposed by Willam and
Wamke (1975) will serve as the Bingham—Prager threshold
function. F. The Willam-Wamke criterion uses the previusly

mentioned stress invariants to define the functional dependence-

on the Cauchy stress (o) and internal state variable (ay). In
general, this flow criterion can be constructed from the follow-
ing general polynomial:

F= x(‘,—T—) +8(2) -1

e Te

(20)

where o, is the uniaxial threshold flow stress in compression
and B is a constant determined by considering homogeneously
stressed elements in the virgin inelastic state, i.c.,

ay =0 (21

Note that a threshold flow stress is similar in nature 10 a yield
stress in classical plasticity. In addition, \ is 2 function depen-
dent on the invariant J; and other threshold stress parameters
that are defined momentarily. The specific details in deriving
the final form of the function F can be found from Willam and
Wamke (1975), and this final formulation is stated here as

12

for brevity. The function F is implicitly dependent on J; through
the function r, which is ized in the next section. This
function is dependent on the angle of similitude 8, which is
defined by the expression

(3‘5)11
2(]1)312
The invariant J, in E? (22) sdmits a sensitivity 10 hydrostatic

stress. The invariant J; in Eq. (23) accounts for different behav-
ior in tension and compression, sincc this invariant changes

cos (35) = 23)
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sign when the direction of a stress component is reversed. The
parameter p characterizes the tensile hydrostatic threshold flow
smmspanmct«willllsobeconsidaedinmondguuin
the next section.

A similar functional form is adopted for the scalar state func-
tion G, i.e..

1 1 gk 1123 3'
G( 91- hv l‘) a,m[ 5 ] + 3po‘

The function G stipulated in the expression above is implicidy
dependent on 7} through a second angle of similitude, 8, which
is defined by the expression

(24)

331
2( 71))!1

This formulation assumes a threshold does not exist for the
scalar function G. and follows the framework of previously
proposed constitutive models based on Robinson’s {1978) vis-
coplastic law.

cos (38) = (25)

Threshold Parameters

For the Willam—-Warnke three-parameter formulation, the
model rs include o,, the teasile uniaxial threshold
stress, 0., the compressive uniaxial threshold stress, and o,..
the equal biaxial compressive threshold stress. The function
r(9) appearing in Eq. (22) and the function r(9) appearing in
Eq.(24) depend implicity on these parameters. This is demon-
strated later in this section.

To explore the nature of the potential function, level surfaces
of 2 are projected onto various stress subspaces for the virgin
inelastic state. Restricting our view to the virgin inclastic state
implies surfaces of {1 = const arc also surfaces of F = const.
As noted previously, F plays the role of a Bingham-Prager
threshold function. Since there are an infinite family of surfaces
F = coast, each associated with a particular magnitude of the
inelastic strain rate, we restrict the scope of this discussion to
threshold surfaces to gain an understanding of the physical na-
ture of the current model.

The parameters o, and o are depicted in Fig. 1 where a
threshold surface (F = 0) has been projected onto the 0y1=022
stress subspace. For illusration, a set of threshold flow stress

t oz (MPa)

on
P,

(L]

Fg. 1 mmumﬁonmwmmm.-o.mw
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valueshubeenadopwdthnmugmycomspondsmvﬂm
anticipated for isotropic monolithic ceramics. Specificaily, the
compressive uniaxial threshold stress value is o = 2.00 MPa.
The tensile uniaxial threshold stress value is o, = 0.20 MPa,
and the equal biaxial compressive threshold stress value is gu
= 2.32 MPa. Using these stress threshold values, the flow func-
tion in Fig. | defines a smooth flow surface for any combination
of stresses. States of stress lying within the flow surface depicted
in this figure represent clastic states of stress. Inelastic flow
occurs when any load path reaches this surface, or other surfaces
beyond (i.e., surfaces where F > 0). It is readily discerned
from this figure that the constitutive model allows different fow
behavior in tension and compression.

The threshold parameter o can be seen when a cutting plane
is passed through the flow surface (F = 0) in the Haigh-
Westergaard stress space. Specifically the cutting plane contains
the hydrostatic stress line and it intersects the conic surface (F
= 0) along two lines (see Fig. 2). By convention, these lines
of intersection are termed meridians. The celative position of
each meridian is defined by the angle of similitude § (which
is depicted in Fig. 3). For the tensile meridian & = 0, and for
the compressive meridian § = x. The tensile and compressive
meridians. depicted in Fig. 2. are linear for the three-parameter
Willam-Warnke criterion. Meridians are soalinear for the five-
parameter formulation. In Fig. 2 all three parameters, ie. o,
o.. and o, are visible. These are defined by the
intersection of load paths with the flow surface. This character-
ization of the threshold flow stresses is described in detail by
Palko (1992). Also note that this formulation of the Bingham—
Prager flow function introduces a dependence on the hydrostatic
compouaent of the stress state. Combining views from Figs. 2
and 3 in the Haigh-Westergaard stress space yiclds a flow
surface in the shape of a pyramid with 2 triangular base. As a
reference, typical J; plasticity models have yield surfaces that
are right circular cylinders in the Haigh—Westergaard stress

space.
In licu of the previously mentioned three threshold stress
parameters, the threshold parameters

Y\.Y,

= 2
P - T (26)
6 12 YuY;
™\ 2 7
" (5) 2%, + ¥, (2N
and
6 172 ka ]
P -4 LA A 28
" (5) [mmn—x (28
- \ 2
- (%)
Tensile Meridian,0 = 0 S
Ohe
>q\ f‘.

C —ﬁ P
Compressive Meridian, = =

Fg. 2 1Tr.dmﬂdlknvlti‘o.ldlﬂntdhm|ho|nnnﬂ.lndconnx‘.ﬂvl
meridigne
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Cutting plane in |
Figure 2

O3

1

Fig. 3 mmm«ummnmhmmu-m-
ergaard strees space

are utilized in order to simplify the expression presented later
for the function 7. These alternative threshold stress parameters
are dependent on the parameters &, .. and o,.. Specificaily.

the normalized threshold stresses
g,
Y, Py (29)
and
Y= 2= (30)
Cc

are introduced to simplify Egs. (26)-(28). Details of the deri-
vations for the parameters appearing in Eqs. (26)—(28) can be
found from either Palko (1992) or Chen (1982).
Thepuametetpisdcpictedgnphianyinﬁg.z.lunowd
earlier, this is the tensile threshold hydrostatic flow
stress. Willam and Warnke postulated that a single sector (—m/
3 = § = n/3) of the flow surface in the M-plane could be
sented as a segment of an ellipse. The major and minor
axes of the ellipse are formulated as functions of the intercepts
r. and r, (see Fig. 3). The minor axis of the ellipse is assumed
to coincide with a tensile axis. However, the center of the ellipse
does not necessarily coincide with the hydrostatic axis, either
for a material in the virgin state, or for a material that has been
subjected to a service history. The reader should consult Palko
(1992) for the complete decivation. With the function r(8)
defined flow surface can be completely mapped in a [I-plane.

as depicted in Fig. 3.
For either 8 or 0 the function r(8) is defined as
u(8)
r(8) 2@ (31
where

w(8) = 2r.(r} = ri)cos (8) + r.(2r, - r)fa(ri-rd

x cos? (8) + 5r — 4rr )t (32)
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and
u(@) = 4(r} — ri) cos? (8) + (r.— 20" (33)
For the definitions expressed in Eqgs. (31)-(33)
T "
-= - 34
3 =0 3 (34)

Physically. ~() represents the deviatoric component of a stress
state, since this vector lies in the T1-plane. Note that Eq. (31)
yields 7(#) = r, for the special case of d = 0. Similarly, r(8)
= r for 8 = x/3.

Flow Surfaces: Interpretation

As in Robinson's original theory, the current model is closely
tied to the concepts of a potential function and normality. It
is this potential-normality structure that provides a consistent
framework. According to the stability postulate of Drucker
(1959), the concepts of normality and convexity are important
requirements. which must be imposed on the development ofa
flow or yield surface. Constitutive relationships developed on
the basis of these requirements assure that the inelastic bound-
ary-value ‘problem is well posed. and solutions obtained are
unique. Experimental work by Robinson and Ellis (1985) has
demonstrated the validity of the potential-normality structure
relative 10 an isotropic J; alloy (i.e., type 316 stainless steel).
With this structure, the direction of the inelastic strain rate
vector for each stress point on & given surface is directed normal

- to the flow surface F = const ( see Fig. 4). Without experimental
evidence (o the contrary, it is postulated that this sgucture is
similarly valid for isotropic monolithic ceramic materials.

For constitutive models based on Robinson’s (1978) original

. framework flow surfaces generated by nonzero values of F are
associated with different inelastic strain rates. Figure 4 illus-
trates a typical family of level surfaces generated by monotoni-
cally increasing the magnitude of F (a; = 0). The family is
projected onto the 7y~ 0x SUESS plane. Large values of F=
const correspond to flow surfaces that eventually cluster, form-
ing a limiting surface. This implies large changes in inelastic
strain rate for only small stress changes. analogous to the yield
condition of classical plasticity. This feature was pointed out
originally by Rice (1970) for constitutive models based on Eq.
(6). : .

Fg. 4 mmwm-mmnm
of the flow function F
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Fig. 5 Flow surtaces as a function of the ratio r./7,

The convexity of the proposed flow surface assures stable
material behavior, i.c.. positive dissipation of inelastic work,
which is based on thermodynamic principles. The convexity
requirement also implies that level surfaces of a function are
closed surfaces, since an open region of the flow surface allows
the existence of a load path along which failure will never
occur. For the Willam-Warnke model, convexity is assured if
the ratio of the intercepts in the I1-plane satisfies the condition
10 = rJr. > 0.5. The family of surfaces shown in Fig. §
illustrates the concept of convexity for surfaces having various
r./r. ratios. Here the values of the ratio vary from 0.726 1o
0.487. Notice the surfaces identified as *¢** and ** f°° violate
the convexity condition.

Finally, the Willam-Warnke flow criterion (and the constitu-
presented herein) degencrates to simpler models
under special limiting condidons. For the case of 7, = 7, = o,
where r, is the same for any angle 3. the model degenerates to
a two-parameter formulation, i.e., the Drucker—Prager flow cxi-
terion. When projected onto the g;;— oz Sress plane under these
conditions, the flow surface depicted in Fig. 1 degenerates to
an ellipse (see Fig. 6). Note that the major axis of this ellipse

o (MPa)

Fig. 8 mwmme—mwm
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is aligned with the bisector of the first and third quadrants, and
the intercepts along the oy and oy axes represent uniaxial
tensile and compressive threshold stresses that are not equal in
magnitude, even though the flow surface degenerates to a circle
in the [1-plane. The Drucker—Prager formulation yields differ-
ent tensile and compressive threshold stresses because the for-
mulation produces a right circular cone in the threc-dimensional
Haigh—-Westergaard stress space. For the special case where 7.
= r =r,and p = =, the Willam~Warnke model reduces to
the single-parameter Von Mises criterion. For this case, the flow
surface degenerates to a circle in the M-planc (a right circular
cylinder in the three-dimensional Haigh—Westergaard stress
space) and an ellipse in o) — 023 Sress space, which is depicted
in Fig. 7.

Stress~Strain Relationship

Employing the chain rule for differentiation and taking the
partial derivative of {1 with respect to dy. as indicated in Eq.
(6). yields
- (@.){29&%&59&9}:2&-_
v = \oF )\ of, onu 80; 0] 0% OSm 90y

aF 8J, dL.. as..]
L Za T o] (35
* .5 dae) O )

where Eq. (8) has been utilized to define S0
Evaluating the partial derivative terms in Eq. (35) yields the
following expression for the flow law

¢, = Co[ Cléu + Cg}:u + C)(z“z' - Z"I;-é‘l')] (36)

where the magnitudes of the coefficients Co. C;, C;. and C, are

dent on the invariants defined in Eqs. (14)-(16) (ie.
1., 1;, and J;). the three threshold parameters (i.e., o, 0., and
), and the flow potential parameters utilized in Eq. (8) (i.e..
. K, and n). The first coefficient is defined by the expression

Co = E-;F; an
.2p
The remaining three coefficients are defined as
i
C = (38)

Fg.7 Flow surface for the Yon Mises formulation
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o= [zaw) (5]

_.L 1 2 2—{! 12 ar(a)
=TT e

o= 5] %]
! (- 5 6]; ’(a)
Note that the partial derivatives of r(9) appearing in Egs. (39)
and (40) are defined as

ar(B)_{ 1 [du(é)]_u(é) du(8)
o),  \wd L 48 vi(d) [ 8

W3/,
8 {2-]:[4(.];)" - 27(]’)111/1} (41)

(40)

and
ar(d) _ _ { 1 [da(b) _u(d) [dvd
8/, WL T Ed T
E]
* {[4(13)’ - 27(J,>=1“=} “2)
where
dl;(:) = 2r,(r} = r3)sin (8)

4r.(2r, = r)(r} = r) sin (8) cos ) (43)
[(4(r2 = r})cos?(8) + 5ri - drr.1
and
du(d)
)

= 8(r? = rl) sin (9) cos (§) (44)

Similarly. udlizing the chain rule for differentiation and tak-
ing the partial derivative of { with respect t0 the internal stress
ay as indicated in Eq. (7) yields

m (B 2 20)

BF 8a,  0G day
- _,,{(22)[952’:_% , 9F 8], 8%, dam
oF )| a7, onu Ba, = 8. 9. Ba. Ba,

. OF o, 0Zafam | | (22) 8G 6%
6], OL.. 9Cm aa,,- oG dh Oa;;

8G 8% Oa.. , 8G 9% 30...]}
+ 45
9% 8an 8a; 8% 8a,, da; (43

Evaluating the partial derivative terms in Eq. (43) yields the
following expression for the evolutionary law:

¢'l - h{éu - C;[ C|6u + C,a., + Cg(al'ﬂ’ - 2—-37251)] } (46)

where ¢, is given in Eq. (36). The magnitudes of the coeffi-
cients C.. Cs. and C, are dependent on the invariants defined
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in Egs. (17)-(19) (i.e., 9. h. and }). the three threshold
parameters (i.e., 0,, @, and 0, ). and the flow potential parame-
ters utilized in equation (8) (i.e., R, H, K. and m). The first
coefficient is defined by the expression

K*RG™

(47)

PR

The remaining two coefficients are defined as

x 2 142
= [ 55]
P[] ar(é)]
a,[r(a)][s] [ah “®

c 1[27,]"’[5»(&)][ I ]’
¢ ="\ Eveunt | vy
oL S 8% r(éd)

Note that the partial derivatives of r(8) appearing in Eqgs. (48)
and (49) are defined as

ar(b)_{ 1 [du(b)]_ u(®) [ du(d) }
% w(é) | o8 vi(d) | db

x { 33 h___ } (50)
2 Bf4(%) - 27( 7))

and

(49)

and

ar(® -
%

_{ 1 [du(é)] _ u(d) [du(é)]}
wdl 44 vi(f) | 48

v
x (51)
{[4(72)’ - 27(7:)’]”’}

Equations (36) and (46) constitute a multiaxial statement of
a constitutive theory for isotropic materials. In the present and
subsequent developments, it will serve as an inelastic deforma-
tion model for ceramic materials.

Summary and Conclusions

A multiaxial continuum theory was presented for predicting
the inelastic response of isotropic monolithic ceramic materials.
The viscoplastic constitutive model was derived from a single
scalar dissipative function, which bas similar geometric inter-
pretations (e.g., convexity and normality) to the yield function
encountered in classical plasticity. By adopting a flow potential
to derive the theory, cenain required continuum properties can
be demonstrated, thercby ensuring that the resulting inelastic
boundg.!y value problem is well-posed, and solutions obtained
arc unique.

Constitutive equations for the flow law (strain rate) and evo-
lutionary law are formulated based on a threshold function,
which exhibits a sensitivity to hydrostatic stress and allows
different behavior in tension and compression. Further, inelastic
deformation is treated as inherently time dependent. A rale of
inclastic strain is associated with every state of suess. As a

Joumal of Engineering for Gas Turbines and Power

result, creep, stress relaxation, and rate sensitivity are phenom-
ena resulting from applied boundary conditions and are not
treated separately in an ad hoc fashion.

The overview presented in this paper has provided a qualita-
tive assessment of the capabilities of this viscoplastic model in
capturing the complex thermomechanical behavior exhibited by
ceramic materials at elevated service temperatures. Incorporat-
ing this model into a nonlincar finite element code would pro-
vide industry the means to numerically simulate the inherently
time-dependent and bereditary phenomena exhibited by these
materials in service.
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Design with Brittle Materials

Stephen F. Duffy, Cleveland State University
Lesley A. Janosik, NASA Lewis Research Center

BRITTLE MATERIALS (e.g., ceramics, inter-
metallics, and graphites) are increasingly being
used in the fabrication of lightweight compo-
nents. From a design engineer's perspective, brit-
tle materials often exhibit attractive high-strength
properties at service temperatures that are well
beyond use temperatures of conventional ductile
materials. For advanced diesel and turbine en-
gines, ceramic components have already demon-
strated functional abilities at temperatures reach-
ing 1370 °C (2500 °F), which is well beyond the
operational limits of most conventional metal al-
loys.—However, a penalty is paid in that these
materials typically exhibit low fracture tough-
ness, which is usually defined by a critical stress
intensity factor, and typically quantified by K.
This inherent undesirable property must be con-
sidered when designing components. Lack of
ductility (i.e., lack of fracture toughness) leads to
low strain tolerance and large variations in ob-
served fracture strength. When a load is applied,
the absence of significant plastic deformation or
microcracking causes large stress concentrations
to occur at microscopic flaws. These flaws are
unavoidably present as a result of fabrication or
in-service environmental factors. Note that non-
destructive evaluation (NDE) inspection pro-
grams cannot be successfully implemented dur-
ing fabrication. The combination of high strength
and low fracture toughness leads to relatively
small critical defect sizes that cannot be detected
by current NDE methods. As a result, compo-
nents with a distribution of defects (characterized
by various sizes and orientations) are produced,
which leads to an observed scatter in component
strength. Catastrophic crack growth for brittle
materials occurs when the crack driving force or
energy release rate reaches a critical value and the
resulting component failure proceeds in a cata-
strophic manner.

The emphasis in this anticle is placed on design
methodologies and characterization of certain
material properties. Of particular interest to the
design engineer is the inherent scatter in strength
noted above. Accounting for this phenomenon
requires a change in philosophy on the design
engineer’s part that leads to a reduced focus on
the use of safety factors in favor of reliability
analyses. [f a brittle material with an obvious

scatter in tensile strength is selected for its high-
strength attributes, or inert behavior, then compo-
nents should be designed using an appropriate
design methodology rooted in statistical analysis.
However, the reliability approach presented in
this chapter demands that the design engineer
must tolerate a finite risk of unacceptable per-
formance. This risk of unacceptable performance
is identified as the probability of failure of a
component (or alternatively, component reliabil-
ity). The primary concern of the engineer is mini-
mizing this risk in an economical manner.

- This article presents fundamental concepts and
models associated with performing time-inde-
pendent and time-dependent reliability analyses
for brittle materials exhibiting scatter in ultimate
strength. However, the discussion contained
within this article is not limited to materials ex-
posed to elevated service temperatures. The con-
cepts can be easily extended to more mundane
applications where brittle materials such as glass
or cements are used. Specific applications that
have utilized ceramic materials at near-ambient
temperatures include wear parts (nozzles, valves,
seals, etc.), cutting tools, grinding wheels, bear-
ings. coatings, electronics, and human prosthe-
ses. Other brittle materials, such as glass and
graphite materials, have been used in the fabrica-
tion of infrared transmission windows, glass sky-
scraper panels, television cathode ray tubes
(CRTs), and high-temperature graphite bearings.
Thus, in this article the design methodologies
used to analyze these types of components, as
well as components exposed to elevated service
temperatures, are presented. Reliability algo-
rithms are outlined, and several applications are
presented to further illustrate the utilization of
these reliability algorithms in structural applica-
tions. For further background material on statisti-
cal methods. see the article “Statistical Aspects of
Design" in this Volume.

Time-Independent
Reliability Analyses

An engineer is trained to quantify component
failure through the use of a safety factor. By

definition, the safety factor for a component sub-
jected to a single load L is given by the ratio:

R
Safety factor = I (Eg 1)

where R is the resistance (or strength) of the material
from which the component is fabricated. Making
use of the concept of a safety factor, the probability
of failure (Py) for the component where a single load
is applied is given by the expression:

P( = Probabiliry [% 2 1) (Eq2)

In making the transition from a deterministic safety
factor for a component to a probability of failure, for
the most genzral case, the assumption is made that
both R and L are random variables. Under this
assumption Py is the product of two finite prob-
abilities summed over all possibie outcomes. Both
“probabilities are associated with an event and a
random variable.
The first event is defined by the random vari-
able L taking on a value in the range:

L.\'-%)SLS(:+%X—)

The probability associated with this eventis the area
under the probability density function (PDF) for the
load random variable (f;) over this interval, ie.,

(Eq3)

Py =f (ydx (Eq4)

The second event is associated with the probability
that the rancdom variable R is less than or equal to x.
This is the area under the probability density func-
tion for the resistance random variable (fg) from - =
(or an appropriate lower [imit defined by the range
of the resistance random variable) to x. This second
probability is given by the cumulative distribution
function (CDF) for the resistance random variable
Fp evaluated at x, that is:

Py=Fpl®) (Eq5)
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With the probability of failure defined as the product
of these two probabilities, summed over all possible
vaiues of x, then:

P

Pr= PPy = | Fr () f (x)dx

(Eq6)

To interpret this integral expression, consider
the graphs in Fig. 1. Inthis figure, the graph of an
arbitrary PDF for the resistance random variable
is superimposed on the graph of an arbitrary PDF
for the load random variable. Note that R and L
must have the same dimensional units (e.g.. force
or stress) to superimpose their graphs in the same
figure. A common misconception is that Py is the
area of overlap encompassed by the two prob-
ability density functions. Scrutiny of Eq 6 leads
to the appropriate conclusion that the probability
of failure is really the area under the composite
function:

gre (%)= Fr(x)f () (Eq7

which is also illustrated in Fig. 1.

Next. consider the situation where the load
random variable has very little scatter relative 0
the resistance random variable. For example, if 2
number of test specimens were fabricated from a
brittle material (a monolithic ceramic), the ulti-
mate tensile strength can easily vary by more than
100%. That is, the highest strength value in the
group tested can easily be twice as large as the
lowest value. Variations of this magnitude are not
typical for the load design variable, and the engi-
neer could easily conclude that load is a determi-
nistic design variable while strength is a random
design variable. This assumption can be accom-
modated in this development by allowing the
PDF for the load random variable to be defined
by the expression:

fi(0=8(x-x (Eq8)
Here & is the Dirac delta function defined as:

R L X=X,
S(x-xy) {0 X, (Eq9)

Note that the Dirac delta function satsfies the defi-
nition for a PDF; that is, the arca under the curve is

Load POF (f )

Resistance POF (1 g)

Frequency —

Composite
function g

Load/resistance —

Fig 1 Interference plot for load and resistance random
vanables

equal to |, and the function is greater than or equal
t0 0 for all values of x. The Dimc delta function
represents the scenario where the standard deviation
of a random variable approaches 0 in the limit, and
the random variable takes on a single value, that is.
the central value identified here as x,,. Because the
Dirac delta function is being used to represent the
load random variable, then x,, represents the deter-
ministic magnitude of the applied load. Keep in
mind that the applied load can have units of force or
stress. However, load and resistance are commonly
represented with units of stress. Thus x,, is replaced
with G, an applied stress, and the probability of
failure is given by the expression:

Py= [ Fq(08(x - 0)dx

(Eq10)

However, with the Dirac delta function embedded
in the integral expression. the probability of failure
simplifies to:

P;=Fg(0) (EqtD)

Thus the probability of failure is equal to the CDF
of the resistance random variable evaluated at the
applied load, ©. The use of the Dirac delta function
in representing the load design variable provides
justification for the use of the Weibull CDF (or a
similarly skewed distribution) in quantifying the
probability of failure for components fabricated
from ceramics or glass.

System Reliability

A unique property of most brittle materials is an
apparent decrease in tensile strength as the size of
the component increases. This is the so-called
size effect. As an example, consider a simple
compenent such as a uniaxial tensile specimen.
Now suppose that two groups of these simple
components have been fabricated. Each group is
identical with the exception that the size of the
specimens in the first group is uniformly smaller
than the specimens in the second group. The
mean sample strength from the first group would
be consistently and distinctly larger in a manner
that cannot be accounted for by randomness.
Thus Eq 1! must be transformed in some manner
to admit u size dependence. This is accomplished
through the use of system reliability concepts.
(See the article “Reliability in Design™ in this
Volume for details on formulating the basic equa-
tions for system reliability.) After the following
discussion the reader should be cognizant that the
expression given in Eq 11 represents the prob-
ability of failure for a specified set of boundary
conditions. If the boundary conditions are modi-
fied in any way, Eq 11 is no longer valid. To
account for size effects and to deal with the prob-
ability of failure for a component in a general
manner, the component should be treated as a
system, and the focus must be directed on the
probability of failure of the system.

The typical approach to designing structural
components with varying stress fields involves
discretizing the component in order to charac-
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terize the stress field using finite element mc
ods. Because component failure may initiate
any of the discrete elements, it is convenien:
consider a component as a system and uti!
system reliability theories. A component is a
ries system if it fails when one discrete elem
fails. This type of failure can be modeled us
weakest-link reliability theories. A componer
a parallel system when failure of a single elenr
does not cause the component to fail. In this c.
the remaining elements sustain load through
distribution. This type of failure can be mod:
with what has been referred to in the literatur
“bundle theories.” Weakest-link theories
bundle theories represent the extremes of fai’
behavior modeled by reliability analysis. T
suggest more complex systems such as “r ot
n" systems. Here a component (system) «
elements functions if at least r elements have
failed. This type of system model has not fc
widespread application in structural reliat
analysis. The assumption in this article is ths
failure behavior of the brittle materials is su

_ and catastrophic. This type of behavior fits w

the description of a series system, thus a wea
link reliability system is adopted.

Now the probability of failure of a dis
element must be related to the overall proba’
of failure of the component. If the failure «
individual element is considered a stati
event, and if these events are independent,
the probability of failure of a discretized co
nent that acts as a series system is given bt
expression:

N
p=1-T1a-p (

=]

where N is the number of finite elements fors
component analysis. Here p, is the probabi
failure of the ith discrete element.

In the next section an expression is spt
for the probability of failure (or alternative
reliability) of the ith discrete element fora:
fied state of stress, thatis, a uniaxial tensile
This expression allows the introduction
scaling. Once size-scaling relationships are
lished for a simple state of stress. the re
ships are extended to multiaxial states of

Two-Parameter Weibull
Distribution and Size Effects

In the ceramic and glass industry the *
distribution is universally accepted as the
bution of choice in representing the unc
PDF for tensile strength. A two-parameter
lation and a three-parameter formulat
available for the Weibull distribution. H
the two-parameter formulation usually le
more conservative estimate for the cor
probability of failure. The two-parameter
PDF for a continuous random strength
denoted as L. is given by the expression
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Slope = -a

n{AV) —

In (d) —

Fig. 2 Specimen gage volume plotted as a function of
failure stress

a\(o (a-1) [ 6 a ]
fe©@ =(§}(§] “"IL'(FJ Jl (Eq13)
forc > 0, and
£z (@)=0 (Eq14)

for 6 <0. The cumulative distribution is given by
the expression:

Fz(c)xl—exp{--gu]l (Eq 15)
L B

foroc >0, and

Fy(o)=0 (Eq16)

for 6 0. Here o (a scatter parameter, or Weibull
modulus) and § (a central location parameter, or
typically referred to as the Weibull scale parameter)
are distribution parameters that define the Weibull
distribution in much the same way as the mean (a
central Jocation parameter) and standard deviation
(a scanier parameter) are parameters that define the
Gaussian (normal) distribution. Note that in the
ceramics and glass literature when the two-parame-
ter Weibull formulation is adopted then *“m” is used
for the Weibull modulus o, and either Ty Or G (see
the discussion in the parameter estimation section
regarding the difference between o, and o) is used
for the Weibull scale parameter, In this article, the
(¢, B) notation is used exclusively and reference is
made to the typical notation adopted in the ceramics
literature. The reason for this is the tendency to
overuse the “G” symbol (e.g., Og. O O-failure
observation, and O-threshold stress, etc.). Through-
out this discussion the symbol “c” implies applied
stress. -

If the random variable representing uniaxial
tensile strength of an advanced ceramic is charac-
terized by a two-parameter Weibull distribution,
that is, the random strength parameter is gov-
emed by Eq 13 and 14, then the probability that
a uniaxial test specimen fabricated from an ad-

vanced ceramic will fail can be expressed by the
CDF:

e 2]

Note that 6, is the maximum normal stress in the
component. When used in the context of charac-
terizing the strength of ceramics and glasses, the
central location parameter is referred to as the
Weibull characteristic strength (By). In the ceramic
literature, this parameter can either be identified as
the Weibull characteristic strength or the Weibull
scale parameter. Because tensile strength is the ran-
dom variable of interest, this parameter is referred to
as a strength parameter throughout the rest of this
article. The characteristic strength is dependent on
the uniaxial test specimen (tensile, flexural, pressur-
ized ring, etc.) used to generate the failure data. For
a given material, this parameter will change in mag-
nitude with specimen geometry (the so-called size
effect alluded to earlier). The Weibull characteristic
strength typically has units of stress. The scatter
parameter « is dimensionless.

With the tensile strength characterized by the
two-parameter Weibull distribution, the discus-
sion retums to the weakest-link expression for
component probability of failure defined by Eq
12. Let R, represent the reliability of the ith
continuum element where:

(Eq17)

Ri=1-p, (Eq18)

The reliability of this continuum element is then
governed by the following expression;

&

R, = exp (— [ﬁ-) AV] (Eq19)

where G is the principal tensile stress applied to the
continuum element. The volume of this arbitrary
continuum element is identified by AV. In this ex-
pression B, is the Weibull material scale parameter
and can be described as the Weibull characteristic
strength of a specimen with unit volume loaded in
uniform uniaxial tension. This is a material specific
parameter that is utilized in the component reliabil-
ity analyses that follow. The dimensions of this
parameter are stress X (volume) o

The requisite size scaling discussed earlier is
introduced by Eq 19. To demonstrate this, take
the natural logarithm of Eq 19 twice, that is:

o
o
Inln (ﬂ):ln(— - AVW (Eq20)
o [50) )

Manipulation of Eq 20 yields:

In(AV)=-ain(c) + lnIn(R,) + ain (P (Eq21)
with

y=In(av) (Eq22)

x=In(c) (Eq23)
m=-Q (Eq24)
and

b=InIn(R) + aln(Py (Eq 25)

then it is apparent that Eq 21 has the form of a
straight line, that is, y = mx + b.

Once again consider the two groups of test
specimens fabricated from the same material
mentioned at the beginning of the section on
system reliability. Recall that the specimens in
cach group are identical with each other, but the
two groups have different gage sections such that
AV (which is now identified as the gage section
volume) is different for each group. Estimate
Weibull parameters a and B, from the failure data
obtained from either group (parameter estimation
is discussed in detail in a following section). A fier
the Weibull parameters are estimated the straight
line in Fig. 2 is located by setting R, equal 10 0.5
(i.e., the 50th percentile) in Eq 21. This value for
R, should establish a line that correlates well with
the median values in each group.

Now return to the data sets mentioned above
and establish the stress value associated with the
median in each group. Plot the gage volumes
(AV) of each group as a function of the median
stress values in Fig. 2. If no size effect is present,
the median failure strengths of the groups will fail
close to a horizontal line. This would indicate no
correlation between gage volume and the median
strength value. Keep in mind that the discussion
here could proceed using any percentile value,
not just the 50th percentile. A systematic vari-
ation away-from a horizontal fine indicates a size
effect exists that must be considered in engineer-
ing design. If the median values for each group
follows the trend indicated by the solid line in
Fig. 2 the design engineer should have no appre-
hensions using Weibull analysis with size scal-
ing. Figures 1 and 3 in Ref 1 are two excellent
examples of these types of graphs with actual
data.

The ability to account for size effects of indi-
vidual elements is introduced through the expres-
sion for R, given by Eq 19. A rational approach
for justifying this expression is outlined above.
Now a general expression for the probability of
failure for a component (i.e., a general form for
Eq 17) is derived based on Eq 19. Under the
assumptions that the component consists of an
infinite number of elements (i.e., the continuum
assumption) and that the component is best rep-
resented by a series system, then:

k
Pe=1-1im | TT%, |

ko iel

(Eq26)

Substituting for K, yields:



Pe=1-exp| ~lim 2":([2]“ AV] (Eq27)

ko= BU

=

Here AV once again represents the volume of an
element. The limit inside the bracket is a Riemann
sum. Thus:

[ orgp ]
Pi=1-exp {. -I [%] dVJ| (Eq28)

Weibull (Ref 2) first proposed this integral repre-
sentation for the probability of failure. The expres-
sion is integrated over all tensile regions of the
specimen volume if the strength-controlling flaws
are randomly distributed through the volume of the
material, or over all tensile regions of the specimen
area if flaws are restricted to the specimen surface.
For failures caused by surface defects, the prob-
ability of failure is given by the expression:

r
P=1 -exp{—[[&]

which is derived in a manner similar to Eq 28. The
segregation of defect populations into volume and
surface-disuributed flaws hints at the possibility of
multiple defect populations. Reference 3 presents an
in-depth treatment of this topic as it relates o ce-
ramic materials.

The Weibull material scale parameter B, has
units of stress x (volume)'’®. If the strength-con-
rolling flaws are restricted to the surface of the
specimens in a sample, then the Weibull material
scale parameter has units of stress x (arca)"®. For
a given specimen geometry, Eq 17 and 28 can be
equated, yielding an expression relating By and
Bg- Methods for converting By to an equivalent By
value are addressed in ASTM Standard Practice
C 1239-95.

]
dAJI (Eq29)

Three-Parameter Weibull Distribution

) The three-parameter Weibull PDF for a con-
tinuous random strength variable, denoted as Z, is
given by the expression:

a\fo- (a-1) [ e ]
f (o‘):(ﬁ][T’] exp {- [—%—’—‘J JI (Eq30)
forc >, and
fie)=0 (Eq31)

for 6 <v. In Eq 30 a is once again the Weibull
modulus (or the shape parameter), B is the Weibull
scale parameter, and Y is a threshold parameter. The
cunmulative distribution is given by the expression

[ ooyt ]
Fz(o)=l—cxp|‘—(—-——-] ! (Eq32)

R

for > . and

F; (@)=0 (Eq33)

for 6 < v. The same reasoning presented in the pre-
vious section on size scaling utilizing a two-parame-
ter formulation can be applied using the
three-parameter formulation. The resulting expres-
sion for the probability of failure of a component
subjected to a single applied stress G is:

[ BRI
P,=l—exp{—[[—9§u—1] dVJ' (Eq34)

if the defect population is spatially distributed
throughout the volume. A similar expression exists
for failures caused by area defects. The focus of the
discussion in the next section turns to accommodat-
ing multiaxial stress states in Eq 28 and Eq 34. This
involves the development of multiaxial reliability
models.

Thé approach outlined in this section and pre-
vious sections to account for the scatter in failure
strength and the size effect of brittie materials
was first introduced by Weibull (Ref 2 and 4). The
concepts were based on the principles of weak-
est-link theory presented earlier. A number of
authors including Pierce (Ref 5), Kontorova (Ref
6), as well as Frenkel and Kontorova (Ref 7) have
made contributions in this area. In fact, Pierce
first proposed the weakest-link concept while
modeling yar failure. However, Pierce assumed
a Gaussian distribution for the strength random
variable of yam, and Weibull developed the
unique PDF for his work that now bears his name.
Hu (Ref 8) explored the difficulties associated
with parameter estimation when a Gaussian or
log normal distribution is adopted for the strength
random variable. Shih (Ref 9) has shown that the
three-parameter Weibull distribution is a more
accurate approximation of brittle material behav-
jor (specifically monolithic ceramics) than the
Gaussian or other distributions. However, most
analyses incorporate a two-parameter Weibull
PDF where the threshold swess (the value of
applied stress below which the failure probability
is 0) is taken as 0. The reliability predictions
obtained using the two-parameter function are
more conservative than those obtained with the
three-parameter model.

Multiaxial Reliability Models

Over the years a number of reliability models
have been presented that extend the uniaxial for-
mat of Eq 28 and 34 to multiaxial states of stress.
Only models associated with isotropic brittle ma-
terials are presented here. Anisotropic reliability
models are beyond the scope of this article. Ref-
erences 10 and 11 contain information pertaining
to reliability models for brittle composites. The
monolithic models highlighted here include the
principle of independent action (PIA) model, the
normal stress averaging (NSA) model, and Bat-
dorf’s model. A brief discussion is presented for
each. A detailed development is omitted for the
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sake of brevity. In order to simplify the present:
tion of each model, recast Eq 28 as:

Pi=l-expl-fydv] (Eq3*

where v is identified as a failure function per un
volume. What remains is the specification of th
failure function y for each reliability model.
Phenomenological Models (NSA and PIA,
To predict the time-independent (also referred t
as fast-fracture) material response under mu:
tiaxial stress states Weibull (Ref 2) proposed ca!
culating a failure function per unit volum
(Weibull identified the function as the risk ¢
rupture) by averaging the tensile normal stre:
raised 10 an exponent in all directions over th
area of a unit radius sphere for volume flaws. Th:

is known as the NSA model where:
-
y=kao, (Eq
where
a
[ ogaa
- A
G, = (Eq¥
| aa
A
and —
(Qa+1)
k= (Eq3
(B

The area integration in Eq 37 is performed over tl
region of a unit sphere where 6,, (the Cauchy norm
stress) is tensile. The reader is directed to Ref 12 [
an in-depth explanation of the constants appearit
in the equations above. Gross (Ref 13) demo
strated that for surface flaws this same averagii
technique can be executed over the contour of
circle with a unit radius. Although the surface flo
technique is intuitively plausible for the NS
model, the approach is somewhat arbitrary. In adc
tion, it lacks a closed-form solution, and therefo
requires computationally intensive numerical mo
eling.

Bamett et al. (Ref 14) and Freudenthal (Ref 1
proposed an alternative approach usually referr:
to as the P1A model. Here:

a,¥ (0¥ (o}

= _.—l + _1 + ..—3 :4
) R 5
where 6, G,. and G, are the three principal stress
at a given point. The PLA model is the probabilis
equivalent to the deterministic maximum stress fe
ure theory.

The NSA model, and in particular the -P
model, have been widely applied in brittle ma
rial design. The reader is directed to Ref 16 to
for a more in-depth development and discussi
of the merits of these two models. Historica!
the NSA and the PLA models have been popu
methods for multiaxial stress state analysis. Ho
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ever, the NSA and PIA models are in essence
phenomenological and do not specify the nature
of the defect causing failure. As a consequence,
no foundation exists for extrapolating predictions
made by these models to conditions different
from the original test conditions. Other models
that are rooted in the principles of fracture me-
chanics are discussed in the next section.

Batdorf’s Theory—Mechanistic Model. The
concepts proposed by Batdorf (Ref 21), and later
refined by Batdorf and Crose (Ref 22), are impor-
tant in that the approach incorporates a mechanis-
tic basis for the effect of multiaxial states of stress
into the weakest-link theory. Here material de-
fects distributed throughout the volume (and/or
over the surface) are assumed to have a random
orientation. In addition, the defects are assumed
to be noninteracting discontinuities (cracks) with
an assumed regular geomeltry. Failure is assumed
to occur when a far-field effective stress associ-
ated with the weakest flaw reaches a critical level.
The effective stress is a predefined combination
of the far-field normal stress and the far-field
shear stress. It is also a function of the assumed
crack configuration, the existing stress state, and
the fracture criterion employed (hence the claim
that the approach captures the physics of frac-
ture). Accounting for the presence of a far-field
shear stress reduces the far-field normal stress
needed for fracture. This model is identified by
taking:

(G}

v=ak jo m O (& 0g) (fnc") 0% do,, (Eq 40)

where @ is a solid angle that is dependent on the
fracture criterion selected, the crack configuration,
and the applied stress state. The maximum effective
Sess (G,)n,, is defined as an equivalent mode 1
fracture stress for mixed-mode loading. The crack-
density coefficient kg is obtained from the following
expression:

ko = N (Ga)

(o))"

(Eq41)

Here o is defined as the critical far-field normal
stress for a given crack configuration under mode 1
loading. Once again Ref 12 can provide a detailed
interpretation of the parameters appearing in Eq40.
For the most part, the Bawdorf model yields more
accurate reliability analyses than those produced by
either the NSA or PIA models.

Numerous authors have discussed the stress
distribution around cracks of various types under
different loading conditions and proposed nu-
merous criteria to describe impending fracture.
Specifically, investigators such as Giovan and
Sincs (Ref 23), Batdorf :Ref 21), Stout and
Petrovic (Ref 24), as well as Petrovic and Stout
(Ref 25) have compared results from the most
widely accepted mixed-mode fracture criteria
with each other and with selected experimental
data. The semiempirical equation developed by
Palaniswamy and Knauss (Ref 26) and Shetty
(Ref 27) seemingly provides enough flexibility

to fit to experimental data. In addition, Shetty's
criterion can account for the out-of-plane crack
growth that is observed under mixed-mode load-
ings. However, several issues must be noted. No
prevailing consensus has emerged regarding a
best probabilistic fracture theory. Most of the
available criteria predict somewhat similar re-
sults, despite the divergence of initial assump-
tions. Moreover, one must approach the mecha-
nistic models with some caution. The reliability
models based on fracture mechanics incorporate
the assumptions made in developing the fracture
models on which they are based. One of the
fundamental assumptions made in the derivation
of fracture mechanics criteria is that the crack
length is much larger than the characteristic length
of the microstructure. This is sometimes referred
to as the continuum principle in engineering me-
chanics. For the brittle materials discussed here,
that characteristic length is the grain size (or di-
ameter). If one contemplates the fact that most
brittle materials are high strength with an attend-
ing low fracture toughness, then the critical defect
size can be quite small. If the critical defect size
approaches the grain size of the material, then the
phenomenological models discussed above may
be more appropriate than the mechanistic models.

Parameter Estimation
As indicated earlier, the distribution of choice

for characterizing the tensile strength of brittle

materials is the Weibull distribution. One funda-
mental reason for this choice goes beyond the fact
that the Weibull distribution usually provides a
good fit to the data. While the log-normal distri-
bution often provides an adequate fit, it precludes
any accounting of size effects. Reference 8 pro-
vides a detailed discussion on this matter. As it
turns out. once a conscious choice is made to
utilize the Weibull distribution, Eq 17 provides a
convenient formulation for parameter estimation.
However, one cannot extract the fundamental
distribution parameters needed for general com-
ponent analysis from this expression, unless the
test specimen has the same geometry and applied
loads as the component. The fundamental distri-
bution parameters (identified previously as mate-
nial specific parameters) were embedded in Eq
28. Thus, together Eq 17 and 28 provide a con-
venient method for extracting material specific
parameters from failure data.

Tensile strength measurements are taken for
one of two reasons: either for a comparison of the
relative quality of two materials or for the predic-
tion of the failure probability for a structural
component. The latter is the focus of this article,
although the analytical details provided here al-
low for either. To obtain point estimates of the
unknown Weibull distribution parameters, well-
defined functions are utilized that incorporate the
failure data and specimen geometry. These func-
tions are referred to as estimators. It is desirable
that an estimator be consistent and efficient. In
addition, the estimator should produce unique,
unbiased estimates of the distribution parameters.
Different types of estimators exist, including:
moment estimators, least squares estimators. and

maximum likelihood estimators. This discussion
initially focuses on maximum likelihood estima-
tors (MLE) due to the efficiency and the ease of
application when censored failure populations
are encountered. The likelihood estimators are
used to compute parameters from failure popula-
tions characterized by a two-parameter Weibull
distribution. Alternatively, nonlinear regression
estimators (discussed later) are utilized to calcu-
late unknown distribution parameters for a three-
parameter Weibull distribution.

Many factors affect the estimates of the distri-
bution parameters. The total number of test speci-
mens plays a significant role. Initially, the uncer- -
tainty associated with parameter estimates
decreases significantly as the number of test
specimens increases. However, a point of dimin-
ishing retums occurs when the cost associated
with performing additional strength tests may not
be justified by improvements in the estimated
values of the distribution parameters. This sug-
gests that a practical number of strength tests
should be performed to obtain a desired leve] of
confidence associated with a parameter estimate.
This point cannot be overemphasized. However,
quite often 30 specimens (a widely cited rule-of-
thumb) is deemed a sufficient quantity of test
specimens when estimating Weibull parameters.
One should immediately ask why 29 specimens
would not suffice. Or more importantly, why is
30 specimens sufficient? The answer to this is
addressed in ASTM Standard Practice C 1239-95
where the details of computing confidence
bounds for the maximum likelihood estimates
(these bounds are directly related to the precision
of the estimate) are presented. Duffy et al. (Ref
28) discusses the reasons why these same confi-
dence bounds are not available for the nonlinear
regression estimators.

Tensile and flexural specimens are the most
commonly used test configurations in determin-
ing ultimate strength values for brittle materials.
However, as noted earlier, most brittle material
systems exhibit a decreasing trend in materal
strength as the test specimen geometry is in-
creased. Thus, the observed strength values are
dependent on specimen size and geometry. Pa-
rameter estimates can be computed based on a
given specimen geometry: however, the parame-
ter estimates should be transformed and utilized
in a component reliability analysis as material-
specific parameters. The procedure for trans-
forming parameter estimates for the typical speci-
men geometries just cited is outlined in ASTM
Standard Practice C 1239-95. The reader should
be aware that the parameters estimated using
nonlinear regression estimators are material-spe--
cific parameters. Therefore, no transformation is
necessary after these parameters have been esti-
mated.

Brittle materials can easily contain two or more
active flaw distributions (e.g., failures due to in-
clusions or machining damage) and each will
have its own strength distribution parameters.
The censoring techniques for the two-parameter
Weibull distribution require positive confirma-
tion of multiple-flaw distnbutions, which neces-



Table 1 Alumina fracture stress data

Specimen  Stress, Specisuen  Siress, Specimen  Stress,
No. MPa No. - MPa No. MPa
1 307 13 47 2§ 376
2 308 14 350 26 376
3 322 15 352 27 381
4 328 16 353 28 385
5 38 17 355 29 388
6 329 18 356 30 395
7 331 19 357 31 402
8 332 0 364 32 411
9 335 21 371 13 413
10 337 22 3N k) 415
1 343 pal 314 35 456
12 35 24 375

sitates fractographic examination to characterize
the fracture origin in each spccimen. Multiple-
flaw distributions may also be indicated by a
deviation from the linearity of the data from a
single Weibull distribution (see Fig.3). However,
observations of approximately linear behavior
should not be considered a sufficient reason to
conclude a single flaw distribution is active. The
reader is strongly encouraged to integrate me-
chanical failure data and fractographic analysis.
As was just noted, discrete fracture origins are
quite often grouped by flaw distributions. The
data for each flaw distribution can also be
screened for outliers. An outlying observation is
one that deviates significantly from other obser-
vations in the sample. However, an apparent out-
lying observation may be an extreme manifesta-
tion of the variability in strength. If this is the
case, the data point should be retained and treated
as any other observation in the failure sample. Yet
the outlying observation can be the result of a
gross deviation from prescribed experimental
procedure, or possibly an error in calculating or
recording the numerical value of the data point in
question. When the experimentalist is clearly
aware that either of these situations has occurred,
the outlying observation may be discarded. un-
less the observation (i.c., the strength value) can
be corrected in a rational manner. For the sake of
brevity, this discussion omits any discussion on
the performance of fractographic analyses and
omits any discussion concerning outlier tests.
Two-Parameter MLEs. With the above discus-
sion serving as background, attention is now fo-
cused on obtaining estimated values of the
Weibull parameters a and Bq. This discussion
focuses on MLEs because of their efficiency and
case of application when censored failure popu-
lations are encountered. When a sample contain-
ing ultimate strength observations yields two or
more distinct flaw distributions, the sample is
said 1o contain censored data. The maximum like-
lihood methodology accounts for censored data
in a rational, straightforward manner. Other esti-
mation techniques (specifically linear regression
estimators) must appeal to ad hoc reranking
schemes in the presence of censored data.
Johnson and Tucker (Ref 1), as well as others,
have shown that the MLE method is more effi-
cient in estimating parameters. Here, efficiency is
measured through the use of confidence bounds.
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For an equivalent confidence level, the authors of
these works have demonstrated that the confi-
dence bounds for an MLE is atways smaller than
the confidence bound obtained using linear re-
gression. For this reason the likelihood estimators
should be used to compute parameters from fail-
ure populations characterized by a two-parameter
Weibull distribution.

The parameter estimates obtained using the
maximunm likelihood technique are unique (for a
two-parameter Weibull distribution), and as the
size of the sample increases, the estimates statis-
tically approach the expected values of the true
population parameter. Let G, O3, ..., O fepre-
sent realizations of the ultimate tensile strength (a
random variable) in a given sample, where it is
assumed that the ultimate tensile strength is char-
acterized by the two-parameter Weibull distribu-
tion. The likelihood function associated with this
sample is the joint probability density of the N
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random variables and thus is a function of t
unknown Weibull distribution parameters (a,
The likelihood function for an uncensored sa:
ple under these assumptions is given by the e
pression:

' i
= expj-|—

Be Ba

=11

(Eq-

Flse

The parameter estimates (the_Weibull modulus
and the characteristic strength ) are determined
taking the partial derivatives of the logarithm of 1
likelihood function with respect to a and By, ¢
equating the resulting expressions to 0. Note that

tildes distinguish a parameter estimate from its ¢
responding true value. The system of equatic
obtained by differentiating the log likelihood fu

ton for a censored sample is given by:

N
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Equation 43 is solved_numerically, becaus
closed-form solution for & cannot be obtained f
this expression. Once & is determined this valt
inserted into Eq 44 and By is calculated directly.
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reader is once again directed to ASTM Standard
Practice C 1239-95 for the expressions comespond-
ing to samples with censored data.

Three-Parameter Linear Regression. To date,
most reliability analyses performed on structural
components fabricated from ceramic malerials
have utilized the two-parameter form of the
Weibull distribution. The use of a two-parameter
Weibull distribution to characterize the random
nature of material strength implies a nonzero
probability of failure for the full range of applied
tensile stress. This represents a conservative de-
sign assumption when analyzing structural com-
ponents. The three-parameter form of the Weibull
distribution was presented earlier in Eq 30 and
31. The additional parameter is a threshold stress
(Y) that allows for zero probability of failure when
the applied stress is at or below the threshold
value. Certain monolithic ceramics have exhib-
ited threshold behavior. The reader is directed to
an extensive database assembled in Ref 29, the
silicon nitride data in Ref 30, as well as data (with
supporting fractography) presented in Ref 31 that
was analyzed later in Ref 28.

When strength data indicates the existence of a
threshold stress, a three-parameter Weibull distri-
bution should be employed in the stochastic fail-
ure analysis of structural components. By em-
ploying the concept of a threshold stress, an
engineer can effectively tailor the design of a
component to optimize structural reliability. To
illustrate the approach, Duffy et al. (Ref 28) em-
bedded the three-parameter Weibull distribution
in a reliability model that utilized PLA. Analysis
of a space-shuttle main engine (SSME) tur-
bopump blade predicted a substantial improve-
ment in component reliability when the three-pa-
rameter Weibull distribution was utilized in place
of the two-parameter Weibull distribution. Note
that the three-parameter form of the Weibull dis-
tribution can casily be extended to Batdorf's (Ref
21, 22) model, reliability models proposed for
ceramic composites by Duffy et al. (Ref 32), or
Thomas and Wetherhold (Ref 33), as well as the
interactive reliability models proposed by Palko
(Ref 34).

The nonlinear regression method presented
here was first proposed by Margetson and Cooper
(Ref 35). However, these estimators maintain
certain disadvantages relative to bias and invari-
ance, and these issues were explored numerically
in Ref 28. The Monte Carlo simulations in Ref 28
demonstrated that the functions proposed in Ref
35 are neither invariant nor unbiased. However,
they are asymptotically well behaved in that bias
decreases and confidence intervals contract as the
sample size increases. Thus, even though bias
and confidence bounds may never be quantified
using these nonlinear regression techniques, the
user is guaranteed that estimated values i 1mprovc
as the sample size is increased.

Regression analysis postulates a relationship
between two variables. In an experiment typi-
cally one variable can be controlled (the inde-
pendent variable), while the response variable (or
dependent variable) is not. In simple failure ex-
penments the material dictates the strength at

failure, indicating that the failure stress is the
response variable. The ranked probability of fail-
ure (P,) can be controlled by the experimentalist,
because it is functionally dependent on the sam-
ple size (N). After arranging the observed failure
stresses (G}, Gy, O3, ..., Gy) in ascending order,
and specifying:

p=t=02) Eq45)

then clearly the ranked probability of failure for a
given stress level can be influenced by increasing or
decreasing the sample size. The procedure proposed
in Ref 35 adopts this philosophy. They assume that
the specimen failure stress is the dependent variable,
and the associated ranked probability of failure be-
comes the independent variable.

Using the three-parameter version of Eq 34, an
expression can be obtained relating the ranked
probability of failure (P), to an estimate of the
failure strength (c) Assuming uniaxial stress
conditions in a test specimen with a unit volume,
Eq 34 yields:

- va
a‘=7*ﬂ°['“[x-lp,.]]

where @, Eo. and ¥ are estimates of the shape pa-
rameter (@), the scale parameter (B), and threshold
parameter (Y). respectively. Expressions for the
evaluation of these parameters for a test specimen
subjected to pure bending are found in Ref 28.
Defining the residual as:

(Eq46)

(Eq47)

§,=0,-0;

where g, is the ith ranked failure stress obtained
from actual test data, then the sum of the squared
residuals is expressed as:

N
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(Eq48)

Here the notation of Ref 35 has been adopted where:

W= h[l-lPJ

Note that the forms of G, and W, change with speci-

(Eq49)

men geometry. This is discussed in more detail in

Ref 28.

It should be apparent that the objective of this
method is 10 obtain parameter estimates that mini-
mize the sum of the squared residuals. Setting the
partial derivatives of the sum of the squared re-
siduals with respect to &, By, and ¥ equal t0 zero
yields the following three expressions:
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in terms of the parameter estimates. The solution of
this system of equations is iterative, where the third
expression is used to check convergence of an itera-
tion. The initial solution vector for this system is
determined after assuming a convenient value for
a. say & = 1. Then B, is computed from Eq 50 and
¥ is calculated from Eq 51. The values of these
parameter estimates are then inserted into Eq 52 10
determine if the convergence criterion is satisfied to
within some prredc(cmuned tolerance (X, ). If this
exprus:on is not satisfied, & is updated and a new
iteration is conducted. This procedure continues
until a set of parameter estimates is determined that
satisfy Eq 52.

The estimators perform reasonably well in
comparison to estimates of the two-parameter
Weibull distribution for the alumina data found
in Table 1. Figure-4 is a plot of probability of
failure versus failure stress for this data. The
straight line represents the two-parameter fit to
the data where a = 143.2, By = 395 (Y=0) using
values from Ref 29 for the shape and scale pa-
rameters. The nonlinear curve represents the
three-parameter fit to the data where a=1.22,
Bp =389, and Y=298. Note that the three-pa-
rameter distribution appears more efficient in
predicting the failure data in the high-reliability
region of the graph. This is a qualitative assess-
ment. Goodness-of-fit statistics such as the Kol-
mogorov-Smirnov statistic, the Anderson-Dar-
ling statistic, and likelihood ratio tests could
provide quantitative measures to establish which
form of the Weibull distribution would best fit the
experimental data. These statistics are utilized in
conjunction with hypothesis testing to assess the



significance level at which the null hypothesis
can be rejected. Comparisons can then be made
based on the value of the significance level.

Time-Independent
Reliability Algorithms

After a reliability model has been adopted and
the failure function w has been specified, the
primary task is the evaluation of the integral
given in Eq 35. Closed-form solutions exist for
only the simplest of component geometries and
boundary conditions. Therefore, integrated com-
puter algorithms have been developed that enable
the design engineer to predict the time-inde-
pendent (fast-fracture) reliability of components
subjected to thermomechanical loading. Two al-
gorithms are discussed here. One algorithm has
been developed at the NASA Lewis Research
Center and has been given the acronym CARES
(Ceramics Analysis and Reliability Evaluation of
Structures). This algorithm is widely discussed in
Ref 12 and 36 to 38. The second computer algo-
rithm, given the acronym ERICA, was developed
by AlliedSignal (Ref 39, 40) with funding pro-
vided by the U.S. Department of Energy. Both
algorithms are discussed briefly. and design ex-
amples are illustrated.

CARES Algorithm. The NASA Lewis Re-
search Center CARES algorithm couples com-
mercially available finite element programs, such
as MSC/NASTRAN, ANSYS, or ABAQUS.
with the probabilistic design models discussed
previously. The algorithm contains three software
modules that:

e Perform parameter estimation using experi-
mental data obtained from standard laboratory
specimens

e Generate a neutral database from MSC/NAS-
TRAN, ABAQUS, and ANSYSS finite element
results files

e Evaluate the reliability of thermomechanically
loaded components

Heat-transfer and linear-elastic finite element analy-
ses are used to determine the temperature field and
stress field. The component reliability analysis
module of CARES uses the thermoelastic or iso-
thermal elastostatic results to calculate the time-in-
dependent reliability for each element using a
specified reliability model. Each element can be
made arbitrarily small, such that the stress field inan
element can be approximated as constant through-
out the element (or subelement). The algorithm is
compatible with most (but not all) two-dimensional
elements, three-dimensional elements, axisymmet-

Ceramic automotive turbocharger wheel. Cour-
tesy of AlliedSignal Turbocharging and Truck Brake

Fig.5

Systems

ric elements, and shell elements for the commercial
finite element algorithms mentioned above. Reli-
ability calculations are performed at the Gaussian
integration points of the element or. optionally, at the
element centroid. Using the element integration
points enables the element to be divided into subele-
ments, where integration point subvolumes,
subareas. and subtemperatures are calculated. The
location of the Gaussian integration point in the
finite element and the corresponding weight func-
tions are considered when the subelement volume
and/or area is calculated. The number of subele-
ments in each element depends on the integration
order chosen and the element type. If the probability
of survival for each element is assumed to be a
mutually exclusive event, the overall component
reliability is the product of all the calculated element
(or subelement) survival probabilities. The CARES
algorithm produces an optional PATRAN file con-
taining risk-of-rupture intensities (a local measure
of reliability) for graphical rendering of the critical
regions of the structure.

ERICA Algorithm. Unlike CARES, the Allied-
Signal algorithm ERICA has a software architec-
ture with a single module. Currently, only one
finite element program interface exists for the
algorithm, that is, an interface with the ANSYS
finite element program. Once again stress and
temperature information from the solution of a
discretized component are used in conjunction
with a specified reliability model to assess com-
ponent reliability. ERICA admits multiple flaw
distributions that can be spatially distributed
through the volume, along the surface, and along
the edges of a component. Both isotropic material
behavior, and to a limited extent, anisotropic ma-
terial behavior (for surface calculations) are taken
into account. This anisotropic surface option al-
lows the user to account for various types of
surface finish on a component (¢.8.. ground, as
fired, etc.). The ERIC A-algorithm can functionon
any platform that supports ANSYS. A limited
number of element types are supported that offer
the user some flexibility in modeling a compo-
nent. Note that neither CARES nor ERICA sup-
port a full suite of clements for any of the com-
mercial finite element algorithms.

Automotive valves and engine components Cour-
lesy of TRW Automotive Valve Divasion

Fig. 6
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Time-independent Design Examples

Reliability analyses are typically segreg
into two catcgories: time-independent and U
dependent. This classification is rooted bot
the historic development of the reliability mo
presented here and alsoina practical approac
the analysis of a component. Yet in many
stances. a component must perform in an
quate fashion over a predetermined service
To accomplish this design goal. the compo
must survive the initial load cycle. Thus,
calculated time-independent reliability valu
used as a screening criterion and can also be 1
as an initial value for the time-dependent anal
discussed later. A fundamental premise of p
abilistic analysis dictates that if the reliabili!
acomponent varies with time then it should n
exceed the initial value (unless there exists s
physical mechanism such as flaw healing tha
account for this phenomenon). Typically, m:
als deteriorate with time, and this assumptic
incorporated throughout this chapter. From
torical perspective, the authors simply poin
that the time-independent models were d
oped first (hence they are presented first hert
addition, the time-independent approach
been rigorously exercised over the years. E
sive design experience and databases have
established prior to proposal of the time
pendent modeling efforts outlined later ir
chapter.

Both the CARES and ERICA reliability
rithms have been used in the design and an:
of numerous structural components. Of the
the NASA CARES algorithm has been
widely utilized for proprietary reasons.
CARES reliability algorithm has been us
design glass and ceramic parts for a wide rar
applications. These include hot section co
nents for turbine and internal combustio
gines, bearings, laser windows on test ng
domes, radiant heater tubes, spacecraft activ
valves and platforms, CRTs, rocket lau
tubes, and ceramic packaging for microp!
sors. Ilustrated below are some typical ¢
and analysis applications that have utilize
CARES software. In the interest of bres
complete example problem cannot be inclu
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this article. For a complete step-by-step proce-
dure on conducting a time-independent compo-
nent reliability analysis, the reader is directed to
Ref 12.

The CARES algorithm has been successfully
used in the development of ceramic turbocharger
wheels (Ref 41). Specifically, the CARES algo-
rithm was utilized to design the CTV7301 silicon
nitride turbocharger rotor, depicted in Fig. 5,
which was implemented in the Caterpillar 3406E
diesel engine. The reduced rotational inertia of
the silicon nitride ceramic rotor compared to a
metallic rotor significantly enhanced the turbo-
charger transient performance and reduced emis-
sions. Note that this was a joint effort involving
AlliedSignal and Caterpillar and represents the
first design and large-scale deployment of ce-
ramic turbochargers in the United States. More
than 1700 units have been supplied to Caterpillar
Tractor Company for on-highway truck engines.
These units together have accumulated a total of
over 120 million miles of service.

Extensive work has been performed to analyze
graphite and ceramic structural components such
as high-temperature valves, test fixtures, and tur-
bine wheels using CARES. A silicon nitride tur-
bine wheel has been designed as a retrofit to
replace components fabricated from Waspaloy in
a military cartridge-mode air turbine starter (Ref
42). The silicon nitride component reduced cost
and weight while increasing resistance to tem-
perature, erosion, and corrosion.

The CARES algorithm has been used to ana-
lyze a ceramic-to-metal brazed joint for automo-
tive gas turbine engines (Ref 43, 44). A major
design hurdle in ceramic-to-metal joining is the
thermal expansion mismatch between the two
different materials. This results in high residual
stresses that increase the likelihood of ceramic
failure. One of the goais of this work was to
improve the capability of the metal shaft to trans-
mit power by reducing concentrated -tensile
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stresses. The results confirmed the importance of
probabilistic failure analysis for assessing the
performance of various brazed joint designs.

A monolithic graphite spacecraft activation
valve was designed (Ref 45) to direct reaction
control gases for fine tuning the trajectory of a
high-performance kinetic energy kill vehicle dur-
ing the last 9 s of flight. Utilizing the CARES
software, the valve was designed to withstand a
gas pressure of 11.4 MPa (1.6 ksi) at 1930 °C
(3506 °F).

A design study (Ref 46) demonstrated the vi-
ability of an uncooled silicon nitride combustor
for commercial application in a 300 kW engine
with a turbine inlet temperature of 1370 °C (2498
°F). Using the CARES algorithm, an analysis
identified the most severe transient thermal stress
in an emergency shutdown. The most critical area
was found to be around the dilution port.

Ceramic poppet valves for spark ignition en-
gines have been designed (Ref 47). These parts,
depicted with other engine components in Fig. 6,
have been field tested in passenger cars with
excellent results. Potential advantages offered by
these valves include reduced seat insert and valve
guide wear, improved valve train dynamics, in-
creased engine output, and reduced friction loss
using lower spring loads.

The largest known zinc-selenide (ZnSe) con-
tainment window (depicted in Fig. 7) was de-
signed using the CARES algorithm. The window
formed a pressure barrier between a cryogenic
vacuum chamber containing optical equipment
and a sensor chamber. The window measured 79
cm (31 in.) in diameter by 2.5 cm (1 in.) thick and
was used in a test facility for long-range infrared
sensors.

The previous examples cited successful appli-
cations of the reliability algorithms in the design
and analysis of commercial applications. In many
cases, the algorithms have been an integral com-
ponent of research and development efforts in

COMBUSTION

REGENERATOR

government-supported programs. A specific ex-
ample of this is the use of the CARES algorithm
by participating organizations in the Advanced
Turbine Technology Applications Program (AT-
TAP) to determine the reliability of structural
component designs. The ATTAP program (Retf
48) is intended to advance the technological
readiness of the ceramic automotive gas turbine
engine. Structural ceramic components represent
the greatest technical challenge facing the com-
mercialization of such an engine and are thus the
prime project focus. Cooperative efforts have
been developed between industry, key national
facilities, and academia to capitalize on the
unique capabilities and facilities developed for
ceramic materials characterization and process-
ing technology. Figure 8 depicts engine compo-
nents, including structural, combustion, regen-
eration, and insulation applications designed
using the NASA-developed CARES software.

Life Prediction Using
Reliability Analyses

The discussions in the previous sections as-
sumed all failures were independent of time and
history of previous thermornechanical loadings.
However, as design protocols emerge for brittle
material systems, designers must be aware of
several innate characteristics exhibited by these
materials. When subjected to elevated service
temperatures, they exhibit complex ther-
momechanical behavior that is both inherently
time dependent and hereditary in the sense that
current behavior depends not only on current
conditions, but also on thermomechanical his-
tory. The design engineer must also be cognizant
that the ability of a component to sustain load
degrades over time due to a variety of effects such
as oxidation, creep, suess corrosion, and cyclic
fatigue. Stress corrosion and cyclic fatigue result

Flg. 8 Cas wurbine engine and components. Scroll and rotor are made from structural ceramics. Courtesy of Allison Engine Company



in a phenomenon called subcritical crack growth
(SCG). This failure mechanism initiates at a
preexisting flaw and continues until a critical
length is attained. At that point, the crack grows
in an unstable fashion leading to catastrophic
failure. The SCG failure mechanism is a time-de-
pendent, load-induced phenomenon. Time-de-
pendent crack growth can also be a function of
chemical reaction, environment, debris wedging
near the crack tip, and deterioration of bridging
ligaments. Fracture mechanism maps, such as the
one developed for ceramic materials (Ref 49)
depicted in Fig. 9, help illustrate the relative con-
tribution of various failure modes as a function of
temperature and stress.

~ In addition to the determination of the Weibull
- shape and scale parameters discussed previously,
analysis of time-dependent reliability in brittle
materials necessitates accurate stress field infor-
mation, as well as evaluation of distinct parame-
ters reflecting material, microstructural, and/or
environmental conditions. Predicted lifetime reli-
ability of brittle material components depends on
Weibull and fatigue parameters estimated from
rupture data obtained from widely used tests in-
volving flexural or tensile specimens. Fatigue
parameter estimates are obtained from naturally
flawed specimens ruptured under static (creep),
cyclic, or dynamic (constant stress rate) loading.
— For other specimen geometries, a finite element
model of the specimen is also required when
estimating these parameters. For a more detailed
discussion of time-dependent parameter estima-
tion, the reader is directed to the CARES/Life
(CARES/Life Prediction Program) Users and
Programmers Manual (Ref 50). This information
can then be combined with stochastic modeling
approaches and incorporated into integrated de-
sign algorithms (computer software) in a manner
similar to that presented previously for time-inde-
pendent models. The theoretical concepts upon
which these time-dependent algorithms have
been constructed and the effects of time-depend-

-~ -ent-mechanisms, most notably subcritical crack .

growth and creep, are addressed in the remaining
sections of this article.

Although it is not discussed in detail here, one
approach to improve the confidence in compo-
nent reliability predictions is to subject the com-
ponent to proof testing prior to placing it in serv-
ice. Ideally, the boundary conditions applied 10 a
component under proof testing simulate those
conditions the component would be subjected to
in service, and the proof test loads are appropri-
ately greater in magnitude over a fixed time inter-
val. This form of testing eliminates the weakest
components and, thus, truncates the tail of the
strength distribution curve. After proof testing.
surviving components can be placed in service
with greater confidence in their integrity and a
predictable minimum service life.

Need for Correct Stress State

With increasing use of brittle materials in high-
temperature structural applications, the need
arises to accurately predict thermomechanical be-
havior. Most current analytical methods for both
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subcritical crack growth and creep models use
elastic stress fields in predicting the time-depend-
ent reliability response of components subjected
to elevated service temperatures. Inelastic re-
sponse at high temperature has been well docu-
mented in the materials science literature for
these material systems, but this issue has been
ignored by the engineering design community.
However, the authors wish to emphasize that ac-
curate predictions of time-dependent reliability
demand accurate stress-field information. Froma
design engineer’s perspective, it is imperative
that the inaccuracies of making time-dependent
reliability predictions based on elastic stress
fields are taken into consideration. This section
addresses this issue by presenting a recent formu-
lation of a viscoplastic constitutive theory to
model the inelastic deformation behavior of brit-
tle materials at high temperatures.

Early work in the field of metal plasticity indi-
cated that inelastic deformations are essentially
unaffected by hydrostatic stress. This is not the
case for brittle (e.g., ceramic-based) material sys-
tems, unless the material is fully dense. The the-
ory presented here allows for fully dense material
behavior as a limiting case. In addition, as
pointed out in Ref 51, these materials exhibit
different time-dependent behavior in tension and
compression. Thus, inelastic deformation models
for these materials must be constructed in a man-
ner that admits sensitivity to hydrostatic stress
and differing behavior in tension and compres-
sion.

A number of constitutive theories for materials
that exhibit sensitivity to the hydrostatic compo-
nent of stress have been proposed that charac-
terize deformation using time-independent clas-
sical plasticity as a foundation. Corapcioglu and

Fracture mechanism map for hot-pressed silicon nitride flexure bars. Fracture mechanism maps help illustrate the
relative contribution of various failure modes as a function of temperature and stress. Source: Ref 49

Uz (Ref 52) reviewed several of these theories by
focusing on the proposed form of the individua'
yield function. The review includes the works o:
Kuhn and Downey (Ref 53), Shima and Oyanc
(Ref 54), and Green (Ref 55). Not included is the
work by Gurson (Ref 56), who not only devel
oped a yield criteria and flow rule, but also dis
cussed the role of void nucleation. Subsequen
work by Mear and Hutchinson (Ref 57) extendec
Gurson's work to include kinematic hardening o
the yield surfaces.

Although the previously mentioned theorie
admit a dependence on the hydrostatic compo
nent of stress, none of these theorics allows dif
ferent behavior. in tension and compression. b
addition, the aforementioned theories are some
what lacking in that they are unable to captur
creep, relaxation, and rate-sensitive phenomen
exhibited by brittle materials at high temperature
Noted exceptions are the recent work by Ding ¢
al. (Ref 58) and the work by White and Hazim
(Ref 59). Another exception is an article by Liu ¢
al. (Ref 60), which is an extension of the wor
presented by Ding and coworkers. As thes
authors point out, when subjected to clevate
service temperatures, brittle materials exhib
complex thermomechanical behavior that is ir
herently time dependent and hereditary in
sense that current behavior depends not only ¢
current conditions, but also on thermomechanic.
history.

The macroscopic continuum theory formulatc
in the remainder of this section captures the:
time-dependent phenomena by developing an¢
tension of a J, plasticity model first proposed |
Robinson (Ref 61) and later extended to sintere
powder metals by Duffy (Ref 62). Although i
viscoplastic model presented by Duffy (Ref 6
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admitted a sensitivity to hydrostatic stress, it did
not allow for different material behavior in ten-
sion and compression.

Willam and Warnke (Ref 63) proposed a yield
criterion for concrete that admits a dependence
on the hydrostatic component of stress and ex-
plicitly allows different material responses in ten-
sion and compression. Several formulations of
their model exist, that is, a three-parameter for-
mulation and a five-parameter formulation. For
simplicity, the overview of the multiaxial deriva-
tion of the viscoplastic constitutive model pre-
sented here builds on the three-parameter formu-
lation. The artending geometrical implications
have been presented elsewhere (Ref 64, 65). A
quantitative assessment has yet to be conducted
because the material constants have not been suit-
ably characterized for a specific material. The
quantitative assessment could easily dovetail
with the nascent efforts of White and coworkers
(Ref 59).
__ The complete theory is derivable from a scalar

dissipative potential function ‘identified here as
€. Under isothermal conditions, this function is
dependent on the applied stress 6; and internal
state variable o

Q=Q(o.ap (Eq53)

The stress dependence for a J, plasticity model or a
J, viscoplasticity model is usually stipulated in
terms of the deviatoric components of the applied
stress, S; =6, - (13) 0,5, and a deviatoric state
variable, a; =0 — (\5) ;8. For the viscoplastic-
ity model presented here, these deviatoric tensors
are incorporated along with the effective stress, N
=0; -0 andan effective deviatoric stress, identi-
fiedas %= 5, - a, Both tensors, thatis,n; and X,
are utilized for notational convenience.
The potential nature of Q is exhibited by the
" manner in which the flow and evolutionary laws
are derived. The flow law is derived from Q by
taking the partial derivative with respect to the
applied stress:

éﬁ-E

(Eq54)

The adoption of a flow potential and the concept of
normality, as expressed in Eq 54, were introduced
by Rice (Ref 66). In his work, the above relationship
was established using thermodynamic arguments.
The authors wish to point out that Eq 54 holds for
each individual inclastic state.

The evolutionary law is similarly derived from
the flow potential. The rate of change of the
internal stress is expressed as:

an
= —h———
u L

Y

(EqSS)

where h is a scalar function of the inelastic state
variable (i.c., the internal stress) only. Using argu-
ments similar to Rice's, Ponter, and Leckie (Ref 67)
have demonstrated the appropriateness of this type
of evolutionary law.

To give the flow potential a specific form, the
following integral format proposed by Robinson
(Ref 61) is adopted:

Q=K2[(-2‘;]jr"df‘+(%)]'c'"dc]

where |1, R, H, and K are material constants. In this
formulation Jt is a viscosity constant, / is a harden-
ing constant, n and m are unitless exponents, and R
is associated with recovery. The octahedral thresh-
old shear stress K appearing in Eq 56 is generally
considered a scalar state variable that accounts for
isotropic hardening (or softening). However, be-
cause isotropic hardening is often negligible at high
homologous temperatures (7/T,, 20.5), 10 a first
appmxunauon K is taken to be a constant for metals.
This assurnption is adopted in the present work for
brittle materials. The reader is directed to Ref 68 for
specific details regarding the experimental test ma-
trix needed to characterize these parameters.

The dependence on the effective stress £ and
the deviatoric internal stress a;; is mu-oduccd
through the scalar functions F = F (2, » Ny ) and
G=G (a;, o 1) Inclusion of n; and a wxll ac-
count for sensitivity to hydrostatic stress. The
concept of a threshold function was introduced
by Bingham (Ref 69) and later generalized by
Hohenemser and Prager (Ref 70). Correspond-
ingly, F is referred to as a Bingham-Prager
threshold function. Inelastic deformation occurs
only for those stress states where F (}: n; )>0.

For frame indifference, the scalar func-
tions F and G (and hence ) must be form invari-
ant under all proper orthogonal transforma-
tions. This condition is ensured if the functions
depend only on the principal invariants of Z,,
a; N and o, that is, F F (1 J,. .I}) where
=t 0= (0,5, 7, = ()T, I, I, and
G G (? 9 9 ) where Il a; Jz (/&)auau

=) a; a i O These scalar quantities are
clemcms of what is known in invariant theory as
an integrity basis for the functions F and G.

A three-parameter flow criterion proposed by
Willam and Warmnke (Ref 63) serves as the Bing-
ham-Prager threshold function, F. The William-
Warnke criterion uses the previously mentioned
stress invariants to define the functional depend-
ence on the Cauchy stress (G, }) and internal state
variable (). In general, this flow criterion can
be constructed from the following general poly-
nomial:

F= l[—\/i-}ﬂi(;—'\—
o, ()

where @, is the uniaxial threshold flow stress in
comptessnon and B is a constant determined by
considering homogeneously stressed clements in
the virgin inelastic state o; = 0.

Note that a threshold flow stress is similar in
nature to a yield stress in classical plasticity. In
addition, X is a function dependent on the invari-
ant J, and other threshold stress parameters that
are defined momentarily. The specific details in
deriving the final form of the function £ can be

(Eq56)

(EqST)

found in Willam and Warnke (Ref 63), and this
final formulation is stated here as:

71"
FlyTolp=— ['][EZ-I —L_1 (Egs®)

s 3o

for brevity. The invariant /| in Eq 58 admits a
sensitivity to hydrostatic sgress. The function F is
implicitly dependent on J, through the function
r(8), where the angle of similitude, 8. is defined by
the expression:

(V3) Iy

0s (30) = ——
20"

(Eq 59)

The invariant 73 accounts for different behavior in
tension and compression, because this invariant

changes sign when the direction of a stress compo- , _.

nent is reversed. The parameter p characterizes the
tensile hydrostatic threshold flow stress. For the
Willam-Warnke three-parameter formulation, the
model parameters include o, the tensile uniaxial
threshold stress, G, the compressive uniaxial
threshold stress, and . the equal biaxial compres-
sive threshold stress.

A similar functional form is adopted for the
scalar state function G. However, this formula-
tion assumes-a threshold does not exist for the
scalar function G and follows the framework of
previously proposed constitutive models based
on Robinson’s viscoplastic law (Ref 61).

Employing the chain rule for differentiation
and evaluating the partial derivative of Q with re-
spect to G, and then with respect to ay, as
indicated in Eq 54 and 55, yields the flow law and
the evolutionary law, respectively. These expres-
sions are degcndem on tz principal invariants
(ie.. l, g5, J. 1 ,.and y) the three Willam-
Warnke thrcshold pammctcrs (ie..0,. 0. and G),
and the flow potential parameters utlhzcd inEq
56 (i.e., f. R, H, K, n, and m). These expres-
sions constitute a multiaxial statement of a
constitutive theory for isotropic materials and
serve as an inelastic deformation model for
ceramic materials.

The overview presented in this section is in-
tended to provide a qualitative assessment of the
capabilities of this viscoplastic model in captur-
ing the complex thermomechanical behavior ex-
hibited by brittle materials at elevated service
temperatures. Constitutive equations for the flow
law (strain rate) and evolutionary law have been
formulated based on a threshold function that
exhibits a sensitivity to hydrostatic stress and
allows different behavior in tension and compres-
sion. Funhermore, inelastic deformation is
treated as inherently time dependent. A rate of
inelastic strain is associated with every state of
stress. As a result, creep, stress relaxation, and
raie sensitivity arc phenomena resulting from ap-
plied boundary conditions and are not treated
separately in an ad hoc fashion. Incorporating this
model into a nonlinear finite element code would
provide a tool for the design engineer to simulate



numerically the inherently time-dependent and
hereditary phenomena exhibited by these materi-
als in service. :

Life Prediction Reliability Models

Using a time-dependent reliability model such
as those discussed in the following section, and
the results obtained from a finite element analy-
sis, the life of a component with complex geome-
try and loading can be predicted. This life is
interpreted as the reliability of a component as a
function of time. When the component reliability
falls below a predetermined value, the associated
point in time at which this occurs is assigned the
life of the component. This design methodology
presented herein combines the statistical nature
of strength-controlling flaws with the mechanics
of crack growth to allow for multiaxial stress
states, concurrent (simultaneously occurring)
flaw populations. and scaling effects. With this
type of integrated design tool, a design engineer
can make appropriate design changes until an
acceptable time to failure has been reached. In the
sections that follow, only creep rupture and fa-
tigue failure mechanisms are discussed. Although
models that account for subcritical crack growth
and creep rupture are presented, the reader is
cautioned that currently available creep models
for advanced ceramics have limited applicability
because of the phenomenological nature of the
models. There is a considerable need to develop
models incorporating both the ceramic material
behavior and microstructural events.

Subcritical Crack Growth. A wide variety of
brittle materials, including ceramics and glasses.
exhibit the phenomenon of delayed fracture or
fatigue. Under the application of a loading func-
tion of magnitude smaller than that which in-
duces short-term failure, there is a regime where
subcritical crack growth occurs and this can lead
to evenwal component failure in service. Sub-
critical crack growth is a complex process involv-
ing a combination of simultaneous and synergis-
" tic failure mechanisms. These can be grouped
into two categories: (1) crack growth due to cor-
rosion and (2) crack growth due to mechanical
effects arising from cyclic loading. Stress corro-
sion reflects a stress-dependent chemical interac-
tion between the material and its environment.
Water, for example, has a pronounced deleterious
effect on the strength of glass and alumina. In
addition, higher temperatures also tend to accel-
erate this process. Mechanically induced cyclic
fatigue is dependent only on the number of load
cycles and not on the duration of the cycle. This
phenomenon can be caused by a variety of ef-
fects, such as debris wedging or the degradation
of bridging ligaments, but essentially it is based
on the accumulation of some type of irreversible
damage that tends to enhance crack growth. Serv-
ice environment, material composition, and ma-
terial microstructure determine if a britle mate-
rial will display some combination of these
fatigue mechanisms.

Lifetime reliability analysis accounting for
SCG under cyclic and/or sustained loads is essen-
tial for the sale and efficient utilization of britile

materials in structural design. Because of the
complex nature of SCG. models that have been
developed tend to be semiempirical and approxi-
mate the behavior of SCG phenomenologically.
Theoretical and experimental work in this area
has demonstrated that lifetime failure charac-
teristics can be described by consideration of the
crack growth rate versus the stress intensity factor
(or the range in the stress intensity factor). This is
graphically depicted (see Fig. 10) as the loga-
rithm of crack growth rate versus the logarithm of
the mode I stress intensity factor. Curves of ex-
perimental data show three distinct regimes or
regions of growth. The first region (denoted by I
in Fig. 10) indicates threshold behavior of the
crack, where below a certain value of stress inten-
sity the crack growth is zero. The second region
(denoted by II in Fig. 10) shows an approxi-
mately linear relationship of stable crack growth.
The third region (denoted by l1I in Fig. 10) indi-
cates unstable crack growth as the materials criu-
cal stress intensity factor is approached. For the
stress-corrosion failure mechanism. these curves
are material and environment sensitive. This
SCG model, using conventional fracture mechan-
ics relationships, satisfactorily describes the fail-
ure mechanisms in materials where at high tem-
peratures, plastic deformations and creep behave
in a linear viscoelastic manner (Ref 71). In gen-
eral, at high temperatures and low levels of stress,
fatlure is best described by creep rupture, which
generates new cracks (Ref 72). The creep rupture
process is discussed further in the next section.
The most-often-cited models in the literature
regarding SCG are based on power-law formula-
tions. Other theories, most notably Wiederhorn's
(Ref 73), have not achieved such widespread
usage, although they may also have a reasonable
physical foundation. Power-law formulations are
used to model both the stress-corrosion phe-
nomenon and the cyclic fatigue phenomenon.
This modeling flexibility, coupled with their
widespread acceptance, make these formulations
the most atractive candidates to incorporate into
a design methodology. A power-law formulation
is obtained by assuming the second crack growth
region is linear and that it dominates the other
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regions. Three power-law formulations are u:
for modeling brittlc materials: the power law
Paris law, and the Walker equation. The pc
law (Ref 71, 74) describes the crack velocity
function of the stress intensity factor and im;
that the crack growth is due to stress comro:
For cyclic fatigue, either the Paris law (Ref 7:
Walker's (Ref 76, 77) modified formulatio
the Paris law is used to model the SCG. The |
law describes the crack growth per load cyc’
a function of the range in the stress inter
factor. The Walker equation relates the c
growth per load cycle to both the range in
crack tip stress intensity factor and the maxir.
applied crack tip stress intensity factor. It is u:
for predicting the effect of the R-ratio (the rat
the minimum cyclic stress to the maximum c:
stress) on the material strength degradation.
Expressions for time-dependent reliability
usually formulated based on the mode 1 equ
lent stress distribution transformed to its equ
lent stress distribution at time 1=10. Inves
tions of mode I crack extension (Ref 78) |
resulted in the following relationship for
equivalent mode I stress intensity factor:

th W.n= Oy (Y. Y~Na(Y. 1) (E

where 6, (¥, 1) is the equivalent mode [ stre:
the cmckw is a function of crack geometry, a (
is the appropriate crack length, and ‘¥ represe
spatial location within the body and the orient
of the crack. In some models (such as the pt
menological Weibull NSA and the PLA model
represents a location only. Y is a function of «
geometry; however, herein it is assumed con
with subcritical crack growth. Crack growth
function of the equivalent mode I stress inte

Stress contour plot of first-stage silicon
turbine rotor blade for a natural-gas-fired
trial turbine engine for cogeneration. The blade is rot.
14,950 rpm. Counesy of Solar Turbtnes Inc.

Fig. 11
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Fig. 12

factor is assumed to follow a power-law relation-
ship:

da (\W. 1)

4wV
ot =AKiq(¥. ) (Eq61)

where A and N are material/environmental con-
stants. The transformation of the equivalent stress
distribution at the time of failure, r = ¢, to its critical
effective stress distribution at time r = 0 is expressed
(Ref 79, 80):

. 1H(N=2)
I oﬁq (W.nadr
Cuqo(Y. )= 2 3 +°r|;2 (Y. 1)
(Eq62)
where
2 (Eq63)

AP KM (v-2)

is a material/environmental fatigue parameter, K. is
the critical stress intensity factor, and Oieq .1 is
the equivalent stress distribution in the component
at time 1 = f, The dimensionless fatigue parameter
Nis mdcpcndcnt of fracture criterion. B is adjusted
to satisfy the requirement that for a uniaxial stress
state, all models produce the same probability of
failure. The paramneter B has units of stress> X time.

Because SCG assumes flaws exist in a mate-
rial, the weakest-link statistical theories dis-
cussed previously are required to predict the
time-dependent lifetime refiability for brittle ma-
terials. An SCG model (e.g., the previously dis-
cussed power law, Paris law, or Walker equation)
is combined with either the two- or three-parame-
ter Weibull cumulative distribution function to
characterize the component failure probability as
a function of service lifetime. The effects of mul-
tiaxial stresses are considered by using the PIA
model, the Weibull NSA method, or the Batdorf
theory. These multiaxial reliability expressions
were outlined in the previous section on time-in-
dependent reliability analysis models, and, for
brevity, are not repeated here. The reader is di-
rected 10 see the previous section or, for more
complete details, to consult Ref 50.

b)

(a) Ceramic turbine wheel and nozzle for advanced auxiliary power unit. (b} Ceramic components for smail ex-
pendable turbojet. Courtesy of Sundstrand Aerospace Corporation

Creep Rupture. For brittle materials, the term
creep can infer two different issues. The first
relates to catastrophic failure of a component

from a defect that has been nucleated and propa- _

gates to critical size. This is known as creep
rupture to the design engineer. Here, it is assumed
that failure does not occur from a defect in the
original flaw population. Unlike SCG, which is
assumed to begin at preexisting flaws in a com-
ponent and continue until the crack reaches a
critical length, creep rupture typically entails the
nucleation, growth, and coalescence of voids
which eventually form macrocracks, which then
propagate to failure. The second issue related to
creep reflects back on SCG as well as creep
rupture, that is, creep deformation. This section
focuses on the former, while the latter (i.e., creep
deformation) is discussed in a previous section.

Currently, most approaches to predict britte
material component lifetime due to creep rupture
employ deterministic methodologies. Stochastic
methodologies for predicting creep life in brittle
material components have not reached a level of
maturity comparable to those developed for pre-
dicting fast-fracture and SCG reliability. One
such theory is based on the premise that both
creep and SCG failure modes act simultaneously
(Ref 81). Another altemative method for charac-
terizing creep rupture in ceramics was developed
by Duffy and Gyekenyesi, (Ref 82), who devel-
oped a time-dependent reliability model that inte-
grates continuum damage mechanics principles
and Weibull analysis. This particular approach
assumes that the failure processes for SCG and
creep are distinct and separable mechanisms.

The remainder of this section outlines this ap-
proach, highlighting creep rupture with the intent
to provide the design engineer with a method to
determine an allowable stress for a given compo-
nent lifetime and reliability. This is accomplished
by coupling Weibull theory with the principles of
continuum damage mechanics, which was origi-
nally developed by Kachanov (Ref 83) to account
for tertiary creep and creep fracture of ductile
metal alloys.

Ideally, any theory that predicts the behavior of
a material should incorporate parameters that are
relevant to its microstructure (grain size, void
spacing, etc.). However, this would require a de-
termination of volume-averaged effects of mi-

crostructural phenomena reflecting nucleation,
growth, and coalescence of microdefects that in
many instances interact. This approach s difficult
even under strongly simplifying assumptions. In
this respect, Leckie (Ref 84) points out that the
difference between the materials scientists and
the engineer is one of scale. He notes the materi-
als scientist is interested in mechanisms of defor-
mation and failure at the microstructural level
and the engineer focuses on these issues at the
component level. Thus, the former designs the
material and the latter designs the component.
Here, the engineer’s viewpoint is adopted, and
readers should note from the outset that contin-
uum damage mechanics does not focus attention
on microstructural events, yet this logical first
approach does provide a practical model, which
macroscopically captures the changes induced by
the evolution of voids and defects.

This method uses a continuum-damage ap-
proach where a continuity function, 9, is coupled

~ with Weibull theory to renider a time-dependent

damage model for ceramic materials. The conti-
nuity function is given by the expression:

(14m+1))

o=(1-b(ay™ (m+ 1)} (Eq64)

where b and m are material constants, G, is the
applied uniaxial stress on a unit volume, and 1 is
tme. From this, an expression for a time to failure,
1, can be obtained by noting that when r=1, ¢ =0.
This results in the following:

1
t = ————— (Eq65)
" m+ 1) =

which leads to the simplification of ¢ as follows:

{1Am+l))

¢ =(1- W] (Eq66)

The above equations are then coupled with an ex-
pression for reliability to develop the time-depend-
ent model. The expression for reliability for a
uniaxial specimen is:
R=exp [ -V (0/B)°] (Eq67)
where V is the volume of the specimen. « is the
Weibull shape parameter, and B is the Weibull scale
parameter. lncorpomung the continuity function
into the reliability equation and assuming a unit
volume yields:

R=exp [ H0,/0B)°) (Eq68)

Substituting for ¢ in terms of the time to failure

results in the time-dependent expression for reliabil-
ity:

R::wl-[%T [1 _ﬂwm., }

This model has been presented in a quallmuvc
fashion. intending to provide the design engineer

(Eq69)



with a reliability theory that incorporates the ex-
pected lifetime of a brittle material component
undergoing damage in the creep rupturc regime.
The predictive capability of this approach de-
pends on how well the macroscopic state variable
¢ captures the growth of grain-boundary mi-
crodefects. Finally, note that the kinetics of dam-
age also depend significantly on the direction of
the applied stress. In the development descnbed
previously, it was expedient from a theoretical
and computational standpoint to use a scalar state
variable for damage because only uniaxial load-
ing conditions were considered. The incorpora-
tion of a continuum-damage approach within a
multiaxial Weibull analysis necessitates the de-
scription of oriented damage by a second-order
tensor.

Life-Prediction Reliability Algorithms

The NASA-developed computer program
CARES/Life (Ceramics Analysis and Reliability
Evaluation of Structures/Life-Prediction pro-
gram) and the AlliedSignal algorithm ERICA
have the capability to evaluate the time-depend-
ent reliability of monolithic ceramic components
subjected to thermomechanical and/or proof test
loading. The reader is directed to Ref 39 and Ref
40 for a detailed discussion of the life-prediction
capabilities of the ERICA algorithm. The

_CARES/Life program is an extension of the pre-
viously discussed CARES program, which pre-
dicted the fast-fracture (time-independent) reli-
ability of monolithic ceramic components.
CARES/Life retains all of the fast-fracture capa-
bilities of the CARES program and also includes
the ability to perform time-dependent reliability
analysis due to SCG. CARES/Life accounts for
the phenomenon of SCG by utilizing the power
law, Paris law, or Walker equation. The Weibull
cumulative distribution function is used to char-
acterize the variation in compenent strength. The
probabilistic nature of material strength and the
effects of multiaxial stresses are modeled using
either the PIA, the Weibull NSA, or the Batdorf
theory. Parameter estimation routines are avail-
able for obtaining inert strength and fatigue pa-
rameters from rupture strength data of naturally
flawed specimens loaded in static, dynamic, or
cyclic fatigue. Fatigue parameters can be calcu-
lated using either the median value technique
(Ref 85), a least squares regression technique, or
a median deviation regression method that is
somewhat similar to trivariant regression (Ref
85). In addition, CARES/Life can predict the ef-
fect of proof testing on component service
probability of failure. Creep and material heal-
ing mechanisms are not addressed in the
CARES/Life code.

Life-Prediction Design Examples

Once again. because of the propnetary nature
of the ERICA algorithm, the life-prediction ex-
amples presented in this section are all based on
design  applications  where  the NASA
CARES/Life algorithm was utilized. Either algo-
rithm should predict the same results cited here
However, al this point in Lime comparative stud-

Fig' 13 Stess plot of an evacuated 68 cm (27 .} diago-

nal CRT. The probability of failure calculated
with CARES/Life was less than 5.0 x 107}. Countesy of
Philips Display Components Company

ies utilizing both algorithms for the same analysis
are not available in the open literature. The pn-
mary thrust behind CARES/Life is the support
and development of advanced heat engines and
related ceramics technology infrastructure. This
U.S. Department of Energy (DOE), and Oak
Ridge National Laboratory (ORNL) have several
ongoing programs such as the Advanced Turbine
Technology Applications Project (ATTAP) (Ref
48, 86) for automotive gas turbine development.
the Heavy Duty Transport Program for low-heat-
rejection heavy-duty diesel engine development.
and the Ceramic Stationary Gas Turbine (CSGT)
program for electric power cogeneration. Both
CARES/Life and the previously discussed
CARES program are used in these projects to
design stationary and rotating equipment, includ-
ing turbine rotors, vanes, scrolls, combustors, in-
sulating rings, and seals. These programs are also
integrated with the DOE/ORNL Ceramic Tech-
nology Project (CTP) (Ref 87) characterization
and life prediction efforts (Ref 88, 89).

The CARES/Life program has been used to
design hot-section turbine parts for the CSGT
development program (Ref 90) sponsored by the
DOE Office of Industrial Technology. This pro-
ject seeks to replace metallic hot-section parts
with uncooled ceramic components in an existing
design for a natural-gas-fired industrial wrbine
engine operating at a turbine rotor inlet tempera-
ture of 1120 °C (2048 °F). At least one stage of
blades (Fig. 11) and vanes, as well as the combus-
tor liner, will be replaced with ceramic parts.
Ultimately. demonstration of the technology will
be proved with a 4000 h engine field test.

Ceramic pistons for a constant-speed drive are
being devcloped Constant-speed drives are used
to convert variable engine speed to a constant
output speed for aircraft electncal generators
The calculated probability of failure of the piston
is less than 02 x 107" under the most severe
limit-load condition This program is sponsored
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Stress contour plot of ceramic dental crow!
suiting from a 600 N biting force. Coune
University of Florida College of Dentistry

Fig.14

by the U.S. Navy and ARPA (Advanced Rese
Projects Agency, formerly DARPA, Defense
vanced Research Projects Agency). As depi
in Fig. 12, ceramic components have been
signed for a number of other applications, 1
notably for aircraft auxiliary power units.

Glass components behave in a similar ma
as ceramics and must be designed using reli
ity evaluation techniques. The possibility ¢
kali strontium silicate glass CRTs spontanec
imploding has been analyzed (Ref 91). Cat
ray tubes are under a constant static load d
the pressure forces placed on the outside ¢
evacuated tube. A 68 cm (27 in.) diagonal
was analyzed with and without an implosior
tection band. The implosion protection bar
duces the overall stresses in the be and, 1
event of an implosion, also contains the
particles within the enclosure. Stress an
(Fig. 13) showed compressive stresses 0
front face and tensile stresses on the sides
tube. The implosion band reduced the max
principal stress by 20%. Reliability analysi
CARES/Life showed that the implosion p
tion band significantly reduced the probabi
failure to about 5 x 107"

The structural integrity of a silicon carbid
vection air heater for use in an advanced [
generation system has been assessed by ¢
and the NASA Lewis Research Center. T
sign used a finned tube arrangement 1.8
in.) in length with 2.5 ¢m (! in.) diam
Incoming air was to be heated from 39010’
(734 to 1292 °F). The hot gas flow acr
tubes was at 980 °C (1796 °F). Heat trans
stress analyses revealed that maximum stre
dients across the tube wall nearest the 1t
air would be the most likely source of fail

Probabilistic design techniques are be
plied to dental ceramic crowns, as ilust
Fig. 14 Frequent failure of some ceramic
(e.g.. 35% failure of malar crowns aft
years), which occurs because of residt
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functional stresses, necessitates design modifica-
tions and improvement of these restorations.
Thermal tempering treatment is being invesl-
gated as a means of introducing compressive
stresses on the surface of dental ceramics to im-
prove the resistance to failure (Ref 92). Evalu-
ation of the risk of material failure must be con-
sidered not only for the service environment, but
also from the tempering process.
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